Summary• Root respiration at the level of a forest stand, an important component of ecosystem carbon balance, has been estimated in the past using various methods, most of them being indirect and relying on soil respiration measurements.• On a 3-yr-old Eucalyptus stand in Congo-Brazzaville, a method involving the upscaling of direct measurements made on roots in situ, was compared with an independent approach using soil respiration measurements conducted on control and trenched plots (i.e. without living roots). The first estimation was based on the knowledge of root-diameter distribution and on a relationship between root diameter and specific respiration rates.• The direct technique involving the upscaling of direct measurements on roots resulted in an estimation of 1.53 µmol m −2 s −1 , c. 50% higher than the mean estimation obtained with the indirect technique (1.05 µmol m −2 s −1 ).• Monte-Carlo simulations showed that the results carried high uncertainty, but this uncertainty was no higher for the direct method than for the trenched-plot method. The reduction of the uncertainties on upscaled results requires more extensive knowledge of temperature sensitivity and more confidence and precision on the respiration rates and biomasses of fine roots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.