Quantification by mass spectrometry imaging (Q-MSI) is one of the hottest topics of the current discussions among the experts of the MS imaging community. If MSI is established as a powerful qualitative tool in drug and biomarker discovery, its reliability for absolute and accurate quantification (QUAN) is still controversial. Indeed, Q-MSI has to deal with several fundamental aspects that are difficult to control, and to account for absolute quantification. The first objective of this manuscript is to review the state-of-the-art of Q-MSI and the current strategies developed for absolute quantification by direct surface sampling from tissue sections. This includes comments on the quest for the perfect matrix-matched standards and signal normalization approaches. Furthermore, this work investigates quantification at a pixel level to determine how many pixels must be considered for accurate quantification by ultraviolet matrix-assisted laser desorption/ionization (MALDI), the most widely used technique for MSI. Particularly, this study focuses on the MALDI-selected reaction monitoring (SRM) in rastering mode, previously demonstrated as a quantitative and robust approach for small analyte and peptide-targeted analyses. The importance of designing experiments of good quality and the use of a labeled compound for signal normalization is emphasized to minimize the signal variability. This is exemplified by measuring the signal for cocaine and a tryptic peptide (i.e., obtained after digestion of a monoclonal antibody) upon different experimental conditions, such as sample stage velocity, laser power and frequency, or distance between two raster lines. Our findings show that accurate quantification cannot be performed on a single pixel but requires averaging of at least 4-5 pixels. The present work demonstrates that MALDI-SRM/MSI is quantitative with precision better than 10-15 %, which meets the requirements of most guidelines (i.e., in bioanalysis or toxicology) for quantification of drugs or peptides from tissue homogenates.
Targeted quantitative proteomic analyses aim at systematically measuring the abundance of proteins in large sets of samples, without biases or missing values. One typical implementation is the verification of biomarker candidates in bodily fluids, which measures extended lists of validated transitions using triple quadrupole instruments in selected reaction monitoring (SRM) mode. However, the selectivity of this mass spectrometer is limited by the resolving power of its mass analyzers, and interferences may require the reanalysis of the samples. Despite the efforts undertaken in the development of software, and resources to design SRM studies, and to analyze and validate the data, the process remains tedious and time consuming. The development of fast scanning high-resolution and accurate mass (HRAM) spectrometers, such as the quadrupole TOF and the quadrupole orbitrap instruments, offers alternatives for targeted analyses. The selectivity of HRAM measurements in complex samples is greatly improved by effectively separating co-eluting interferences. The fragment ion chromatograms are extracted from the high-resolution MS/MS data using a narrow mass tolerance. The entire process is straightforward as the selection of fragment ions is performed postacquisition. This account describes the different HRAM techniques and discusses their advantages and limitations in the context of targeted proteomic analyses.
Targeted proteomics allows the highly sensitive detection of specific peptides and proteins in complex biological samples. Here, we describe a methodology for targeted peptide quantification using a trapped ion mobility quadrupole time-of-flight mass spectrometer (timsTOF Pro). The prm-PASEF method exploits the multiplexing capability provided by the trapped ion mobility separation, allowing more than 200 peptides to be monitored over a 30 min liquid chromatography separation. Compared to conventional parallel reaction monitoring (PRM), precursor ions are accumulated in the trapped ion mobility spectrometry (TIMS) cells and separated according to their shape and charge before eluting into the quadrupole time-of-flight (QTOF) part of the mass spectrometer. The ion mobility trap allows measuring up to six peptides from a single 100 ms ion mobility separation with the current setup. Using these improved mass spectrometric capabilities, we detected and quantified 216 isotope-labeled synthetic peptides (AQUA peptides) spiked in HeLa human cell extract with limits of quantification of 17.2 amol for some peptides. The acquisition method is highly reproducible between injections and enables accurate quantification in biological samples, as demonstrated by quantifying KRas, NRas, and HRas as well as several Ras mutations in lung and colon cancer cell lines on fast 10 min gradient separations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.