Detecting return of spontaneous circulation (ROSC) during cardiopulmonary resuscitation (CPR) is challenging, time consuming, and requires interrupting chest compressions. Based on automated-CPR porcine data, we have developed an algorithm to support ROSC detection, which detects cardiogenic output during chest compressions via a photoplethysmography (PPG) signal. The algorithm can detect palpable and impalpable spontaneous pulses. A compression-free PPG signal which estimates the spontaneous pulse waveform, was obtained by subtracting the compression component, modeled by a harmonic series. The fundamental frequency of this series was the compression rate derived from the transthoracic impedance signal measured between the defibrillation pads. The amplitudes of the harmonic components were obtained via a least mean-square algorithm. The frequency spectrum of the compression-free PPG signal was estimated via an autoregressive model, and the relationship between the spectral peaks was analyzed to identify the pulse rate (PR). Resumed cardiogenic output could also be detected from a decrease in the baseline of the PPG signal, presumably caused by a redistribution of blood volume to the periphery. The algorithm indicated cardiogenic output when a PR or a redistribution of blood volume was detected. The algorithm indicated cardiogenic output with 94% specificity and 69% sensitivity compared to the retrospective ROSC detection of nine clinicians. Results showed that ROSC detection can be supported by combining the compression-free PPG signal with an indicator based on the detected PR and redistribution of blood volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.