The physical and chemical properties of domain-domain interactions have been analysed in two-domain proteins selected from the protein classification, CATH. The two-domain structures were divided into those derived from (i) monomeric proteins, or (ii) oligomeric or complexed proteins. The size, polarity, hydrogen bonding and packing of the intra-chain domain interface were calculated for both sets of two-domain structures. The results were compared with inter-chain interface parameters from permanent and non-obligate protein-protein complexes. In general, the intra-chain domain and inter-chain interfaces were remarkably similar. Many of the intra-chain interface properties are intermediate between those calculated for permanent and non-obligate inter-chain complexes. Residue interface propensities were also found to be very similar, with hydrophobic residues playing a major role, together with positively charged arginine residues. In addition, the residue composition of the domain interfaces were found to be more comparable with domain surfaces than domain cores. The implications of these results for domain swapping and protein folding are discussed.
This paper studies strategies for collision avoidance between two persons walking along crossing trajectories. It has been previously demonstrated that walkers are able to anticipate the risk of future collision and to react accordingly. The avoidance task has been described as a mutual control of the future distance of closest approach, MPD (i.e., Mininum Predicted Distance). In this paper, we studied the role of each walker in the task of controlling MPD. A specific question was: does the walker giving way (2nd at the crossing) and the one passing first set similar and coordinated strategies? To answer this question, we inspected the effect of motion adaptations on the future distance of closest approach. This analysis is relevant in the case of collision avoidance because subtle anticipatory behaviors or large last moment adaptations can finally yield the same result upon the final crossing distance. Results showed that collision avoidance is performed collaboratively and the crossing order impacts both the contribution and the strategies used: the participant giving way contributes more than the one passing first to avoid the collision. Both walkers reorient their path but the participant giving way also adapts his speed. Future work is planned to investigate the influence of crossing angle and TTC on adaptations as well as new types of interactions, such as intercepting or meeting tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.