Platelets play an important role in defense against pathogens; however, the interaction between Escherichia coli and platelets has not been well described and detailed. Our goal was to study the interaction between platelets and selected strains of E. coli in order to evaluate the antibacterial effect of platelets and to assess bacterial effects on platelet activation. Washed platelets and supernatants of pre-activated platelets were incubated with five clinical colistin-resistant and five laboratory colistin-sensitive strains of E. coli in order to study bacterial growth. Platelet activation was measured with flow cytometry by evaluating CD62P expression. To identify the difference in strain behavior toward platelets, a pangenome analysis using Roary and O-antigen serotyping was carried out. Both whole platelets and the supernatant of activated platelets inhibited growth of three laboratory colistin-sensitive strains. In contrast, platelets promoted growth of the other strains. There was a negative correlation between platelet activation and bacterial growth. The Roary results showed no logical clustering to explain the mechanism of platelet resistance. The diversity of the responses might be due to strains of different types of O-antigen. Our results show a bidirectional interaction between platelets and E. coli whose expression is dependent on the bacterial strain involved.
Apart from their involvement in hemostasis, platelets have been recognized for their contribution to inflammation and defense against microbial agents. The interaction between platelets and bacteria has been well studied in the model of Staphylococcus and Streptococcus but little described in Gram-negative bacteria, especially Escherichia coli. Being involved in the hemolytic uremic syndrome as well as sepsis, it is important to study the mechanisms of interaction between platelets and E. coli. Results of the published studies are heterogeneous. It appears that some strains interact with platelets through the toll-like receptor-4 (TLR-4) and others through the Fc gamma glycoprotein. E. coli mainly uses lipopolysaccharide (LPS) to activate platelets and cause the release of antibacterial molecules, but this is not the case for all strains. In this review, we describe the different mechanisms developed in previous studies, focusing on this heterogeneity of responses that may depend on several factors; mainly, the strain studied, the structure of the LPS and the platelet form used in the studies. We can hypothesize that the structure of O-antigen and an eventual resistance to antibiotics might explain this difference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.