We propose an ordered set of experimentally accessible conditions for detecting entanglement in mixed states. The k-th condition involves comparing moments of the partially transposed density operator up to order k. Remarkably, the union of all moment inequalities reproduces the Peres-Horodecki criterion for detecting entanglement. Our empirical studies highlight that the first four conditions already detect mixed state entanglement reliably in a variety of quantum architectures. Exploiting symmetries can help to further improve their detection capabilities. We also show how to estimate moment inequalities based on local random measurements of single state copies (classical shadows) and derive statistically sound confidence intervals as a function of the number of performed measurements. Our analysis includes the experimentally relevant situation of drifting sources, i.e. non-identical, but independent, state copies.
When a quantum system initialized in a product state is subjected to either coherent or incoherent dynamics, the entropy of any of its connected partitions generically increases as a function of time, signalling the inevitable spreading of (quantum) information throughout the system. Here, we show that, in the presence of continuous symmetries and under ubiquitous experimental conditions, symmetry-resolved information spreading is inhibited due to the competition of coherent and incoherent dynamics: in given quantum number sectors, entropy decreases as a function of time, signalling dynamical purification. Such dynamical purification bridges between two distinct short and intermediate time regimes, characterized by a log-volume and log-area entropy law, respectively. It is generic to symmetric quantum evolution, and as such occurs for different partition geometry and topology, and classes of (local) Liouville dynamics. We then develop a protocol to measure symmetry-resolved entropies and negativities in synthetic quantum systems based on the random unitary toolbox, and demonstrate the generality of dynamical purification using experimental data from trapped ion experiments [Brydges et al., Science 364, 260 (2019)]. Our work shows that symmetry plays a key role as a magnifying glass to characterize many-body dynamics in open quantum systems, and, in particular, in noisy-intermediate scale quantum devices.
When some of the parties of a multipartite entangled pure state are lost, the question arises whether the residual mixed state is also entangled, in which case the initial entangled pure state is said to be robust against particle loss. In this paper, we investigate this entanglement robustness for N -qubit pure states. We identify exhaustively all entangled states that are fragile, i.e., not robust, with respect to the loss of any single qubit of the system. We also study the entanglement robustness properties of symmetric states and put these properties in the perspective of the classification of states with respect to stochastic local operations assisted with classic communication (SLOCC classification).
We use the generalized concurrence approach to investigate the general multipartite separability problem. By extending the preconcurrence matrix formalism to arbitrary multipartite systems, we show that the separability problem can be formulated equivalently as a pure matrix analysis problem that consists in determining whether a given set of symmetric matrices is simultaneously unitarily congruent to hollow matrices, i.e., to matrices whose main diagonal is only composed of zeroes.
Understanding multipartite entanglement is vital, as it underpins a wide range of phenomena across physics. The study of transformations of states via Local Operations assisted by Classical Communication (LOCC) allows one to quantitatively analyse entanglement, as it induces a partial order in the Hilbert space. However, it has been shown that, for systems with fixed local dimensions, this order is generically trivial, which prevents relating multipartite states to each other with respect to any entanglement measure. In order to obtain a non-trivial partial ordering, we study a physically motivated extension of LOCC: multi-state LOCC. Here, one considers simultaneous LOCC transformations acting on a finite number of entangled pure states. We study both multipartite and bipartite multi-state transformations. In the multipartite case, we demonstrate that one can change the stochastic LOCC (SLOCC) class of the individual initial states by only applying Local Unitaries (LUs). We show that, by transferring entanglement from one state to the other, one can perform state conversions not possible in the single copy case; provide examples of multipartite entanglement catalysis; and demonstrate improved probabilistic protocols. In the bipartite case, we identify numerous non-trivial LU transformations and show that the source entanglement is not additive. These results demonstrate that multi-state LOCC has a much richer landscape than single-state LOCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.