Acoustical tweezers based on focalized acoustical vortices hold the promise of precise contactless manipulation of millimeter down to submicrometer particles, microorganisms, and cells with unprecedented combined selectivity and trapping force. Yet, the widespread dissemination of this technology has been hindered by severe limitations of current systems in terms of performance and/or miniaturization and integrability. Here, we unleash the potential of focalized acoustical vortices by developing the first flat, compact, paired single electrode focalized acoustical tweezers. These tweezers rely on spiraling transducers obtained by folding a spherical acoustical vortex on a flat piezoelectric substrate. We demonstrate the ability of these tweezers to grab and displace micrometric objects in a standard microfluidic environment with unique selectivity. The simplicity of this system and its scalability to higher frequencies open tremendous perspectives in microbiology, microrobotics, and microscopy.
Contactless manipulation of microparticles is demonstrated with single-beam acoustical tweezers based on precursor swirling Rayleigh waves. These surface waves degenerate into acoustical vortices when crossing a stack made of a fluid layer and its solid support, hence creating a localized acoustical trap in a fluid cavity. They can be synthesized with a single interdigitated transducer whose spiraling shape encodes the phase of the field like a hologram. For applications, these tweezers have many attractive features: they are selective, flat, easily integrable, and compatible with disposable substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.