AMPA-type glutamate receptors mediate fast excitatory transmission at many central synapses, and rapid desensitization of these receptors can shape the decay of synaptic currents and limit the fidelity of high-frequency synaptic transmission. Here we use a combination of fast glutamate application protocols and kinetic simulations to determine how AMPA receptor desensitization depends on the number of subunits occupied by glutamate. We show that occupancy of a single subunit is sufficient to desensitize AMPA-type channels and that receptors with one to four glutamates bound enter desensitization at similar rates. We find that recovery from desensitization follows a similar sigmoid time course for channels with two to four glutamates bound but is faster and exponential for singly occupied channels. The results suggest that desensitization, at intermediate and high glutamate concentrations, is accompanied by two conformational changes that slow glutamate dissociation. We propose a kinetic scheme that accurately predicts several types of experimental results and differs significantly from previous models in the assignment of affinities for binding to closed and desensitized states. We conclude that desensitization involves a rearrangement that stabilizes the binding domains of one subunit in each dimer in a partially closed conformation. This stabilization likely results from an interaction at the dimer-dimer interface between the binding domains of adjacent subunits.
At central excitatory synapses, N-methyl-D-aspartate (NMDA) receptors, which have a high affinity for glutamate, produce a slowly rising synaptic current in response to a single transmitter pulse and an additional current after a second, closely timed stimulus. Here we show, by examining the kinetics of transmitter binding and channel gating in single-channel currents from recombinant NR1/NR2A receptors, that the synaptic response to trains of impulses is determined by the molecular reaction mechanism of the receptor. The rate constants estimated for the activation reaction predict that, after binding neurotransmitter, receptors hesitate for approximately 4 ms in a closed high-affinity conformation before they either proceed towards opening or release neurotransmitter, with about equal probabilities. Because only about half of the initially fully occupied receptors become active, repetitive stimulation elicits currents with distinct waveforms depending on pulse frequency. This high-affinity/low-efficiency activation mechanism might serve as a link between stimulation frequency and the directionality of the ensuing synaptic plasticity.
Glutamate binds to AMPA receptors within a deep cleft between two globular protein domains (domains 1 and 2). Once glutamate binds, the cleft closes, and agonist-bound structures of the isolated ligand binding core suggest that closure of the binding cleft is sufficiently complete that it essentially prevents ligand dissociation. There is also considerable evidence supporting the view that cleft closure is the initial conformational change that triggers receptor activation and desensitization, and it has been clearly demonstrated that there is a correlation between the degree of cleft closure and agonist efficacy. It is unknown, however, whether the stability of binding cleft closure also influences receptor-channel properties. The crystallographic structures indicate that closed-cleft conformations are stabilized by the formation of hydrogen bonds that involve amino acid side chains of residues in domains 1 and 2. We show here that mutations that disrupt one such cross-cleft hydrogen bond (in the AMPA receptor subunit GluR2) decrease both agonist affinity and efficacy. The same mutations also hasten recovery from desensitization. We conclude that the stability of binding cleft closure has a significant impact on AMPA receptor function and is a major determinant of the apparent affinity of agonists. The results suggest that the stability of cleft closure has been tuned so that glutamate dissociates as rapidly as possible yet remains a full agonist.
Most AMPA-type glutamate receptors (GluRs) exhibit rapid and virtually complete desensitization when activated by glutamate, and at some central synapses it is largely desensitization that determines the decay of EPSCs. However, the mechanisms underlying the conformation change that results in desensitization are not fully understood. AMPA receptor subunits that contain a single amino acid substitution have been shown to form homomeric channels that show markedly reduced desensitization. We show here that the coexpression of wild-type GluR1 with one such mutant, GluR1(L497Y), results in heteromeric channels that show desensitization behavior that is intermediate between wild-type and mutant homomers. The relative amplitudes of the multiple exponential components present in the decay of glutamate-evoked currents depended on the relative abundance of wild-type and mutant subunits and were described by the combinatorial distribution of the two types of subunits into tetrameric, but not pentameric, assemblies. Our results are consistent with recent structural data suggesting that AMPA receptors are tetrameric assemblies composed of two dimers.
Abstract. The capacity for long-distance migration of the oligodendrocyte precursor cell, oligondendrocytetype 2 astrocyte (O-2A), is essential for myelin formation. To study the molecular mechanisms that control this process, we used an in vitro migration assay that uses neurohypophysial explants. We provide evidence that O-2A cells in these preparations express functional N-mehtyl-D-aspartate (NMDA) receptors, most likely as homomeric complexes of the NR1 subunit. We show that NMDA evokes an increase in cytosolic Ca 2÷ that can be blocked by the NMDA receptor antagonist AP-5 and by Mg 2÷. Blocking the activity of these receptors dramatically diminished O-2A cell migration from explants. We also show that NMDA receptor activity is necessary for the expression by O-2A cells of the highly sialylated polysialic acid-neural cell adhesion molecule (PSA-NCAM) that is required for their migration. Thus, glutamate or glutamate receptor ligands may regulate O-2A cell migration by modulating expression of PSA-NCAM. These studies demonstrate how interactions between ionotropic receptors, intracellular signaling, and cell adhesion molecule expression influence cell surface properties, which in turn are critical determinants of cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.