The aim of the study was to evaluate the sensitivity and resource efficiency of a partially automated adverse event (AE) surveillance system for routine patient safety efforts in hospitals with limited resources.Methods: Twenty-eight automated triggers from the hospital information system's clinical and administrative databases identified cases that were then filtered by exclusion criteria per trigger and then reviewed by an interdisciplinary team. The system, developed and implemented using in-house resources, was applied for 45 days of surveillance, for all hospital inpatient admissions (N = 1107). Each trigger was evaluated for its positive predictive value (PPV). Furthermore, the sensitivity of the surveillance system (overall and by AE category) was estimated relative to incidence ranges in the literature. Results:The surveillance system identified a total of 123 AEs among 283 reviewed medical records, yielding an overall PPV of 52%. The tool showed variable levels of sensitivity across and within AE categories when compared with the literature, with a relatively low overall sensitivity estimated between 21% and 44%. Adverse events were detected in 23 of the 36 AE categories defined by an established harm classification system. Furthermore, none of the detected AEs were voluntarily reported. Conclusions:The surveillance system showed variable sensitivity levels across a broad range of AE categories with an acceptable PPV, overcoming certain limitations associated with other harm detection methods. The number of cases captured was substantial, and none had been previously detected or voluntarily reported. For hospitals with limited resources, this methodology provides valuable safety information from which interventions for quality improvement can be formulated.
ObjectiveThe aim of the study is to evaluate the performance of a biomarker-based machine learning (ML) model (not including vital signs) derived from reviewed rapid response team (RRT) activations in predicting all-cause deterioration in general wards patients.DesignThis is a retrospective single-institution study. All consecutive adult patients’ cases on noncritical wards identified by RRT calls occurring at least 24 hours after patient admission, between April 2018 and June 2020, were included. The cases were reviewed and labeled for clinical deterioration by a multidisciplinary expert consensus panel. A supervised learning approach was adopted based on a set of biomarkers and demographic data available in the patient’s electronic medical record (EMR).SettingThe setting is a 250-bed tertiary university hospital with a basic EMR, with adult (>18 y) patients on general wards.PatientsThe study analyzed the cases of 514 patients for which the RRT was activated. Rapid response teams were extracted from the hospital telephone log data. Two hundred eighteen clinical deterioration cases were identified in these patients after expert chart review and complemented by 146 “nonevent” cases to build the training and validation data set.InterventionsNoneMeasurements and Main ResultsThe best performance was achieved with the random forests algorithm, with a maximal area under the receiver operating curve of 0.90 and F1 score of 0.85 obtained at prediction time T0–6h, slightly decreasing but still acceptable (area under the receiver operating curve, >0.8; F1 score, >0.75) at T0–42h. The system outperformed most classical track-and-trigger systems both in terms of prediction performance and prediction horizon.ConclusionsIn hospitals with a basic EMR, a biomarker-based ML model could be used to predict clinical deterioration in general wards patients earlier than classical track-and-trigger systems, thus enabling appropriate clinical interventions for patient safety and improved outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.