The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics.After a brief presentation of the 2D Euler and quasi-geostrophic equations, the specificity of two-dimensional and geophysical turbulence is emphasized. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations, mean field approach) and thermodynamic concepts (ensemble inequivalence, negative heat capacity) are briefly explained and described.On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of twodimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the GulfStream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations is provided.We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equilibrium steady states. In this last case, forces and dissipation are in a statistical balance; fluxes of conserved quantity characterize the system and microcanonical or other equilibrium measures no longer describe the system.
Topology sheds new light on the emergence of unidirectional edge waves in a variety of physical systems, from condensed matter to artificial lattices. Waves observed in geophysical flows are also robust to perturbations, which suggests a role for topology. We show a topological origin for two well-known equatorially trapped waves, the Kelvin and Yanai modes, owing to the breaking of time-reversal symmetry by Earth's rotation. The nontrivial structure of the bulk Poincaré wave modes encoded through the first Chern number of value 2 guarantees the existence of these waves. This invariant demonstrates that ocean and atmospheric waves share fundamental properties with topological insulators and that topology plays an unexpected role in Earth's climate system.
A theoretical description for the equilibrium states of a large class of models of two-dimensional and geophysical flows is presented. A statistical ensemble equivalence is found to exist generically in these models, related to the occurrence of peculiar phase transitions in the flow topology. The first example of a bicritical point (a bifurcation from a first toward two second order phase transitions) in the context of systems with long-range interactions is reported. Academic ocean models, the Fofonoff flows, are studied in the perspective of these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.