Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis1,2. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis3,4, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis5, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue-selective and dosage-dependent effects on craniofacial development. Taken together, our findings illustrate how disruption in general regulators that compromise nucleolar homeostasis can result in tissue-selective malformations.
During development, cells progress from a pluripotent state to a more restricted fate within a particular germ layer. However, cranial neural crest cells (CNCCs), a transient cell population that generates most of the craniofacial skeleton, have much broader differentiation potential than their ectodermal lineage of origin. Here, we identify a neuroepithelial precursor population characterized by expression of canonical pluripotency transcription factors that gives rise to CNCCs and is essential for craniofacial development. Pluripotency factor Oct4 is transiently reactivated in CNCCs and is required for the subsequent formation of ectomesenchyme. Furthermore, open chromatin landscapes of Oct4+ CNCC precursors resemble those of epiblast stem cells, with additional features suggestive of priming for mesenchymal programs. We propose that CNCCs expand their developmental potential through a transient reacquisition of molecular signatures of pluripotency.
Exposure to environmental teratogenic pollutant leads to severe birth defects. However, the biological events underlying these developmental abnormalities remain undefined. Here, we report a molecular link between an environmental stress response pathway and key developmental genes during craniofacial development. Strikingly, mutant mice with impaired Pax3/7 function display severe craniofacial defects. We show that these are associated with an upregulation of the signaling pathway mediated by the Aryl hydrocarbon receptor (AHR), the receptor to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), revealing a genetic interaction between Pax3 and AHR signaling. Activation of AHR signaling in Pax3-deficient embryos drives facial mesenchymal cells out of the cell cycle through the upregulation of p21 expression. Accordingly, inhibiting AHR activity rescues the cycling status of these cells and the facial closure of Pax3/7 mutants. Together, our findings demonstrate that the regulation of AHR signaling by Pax3/7 is required to protect against TCDD/AHR-mediated teratogenesis during craniofacial development.
Plants and many other eukaryotes can make use of two major pathways to cope with mutagenic effects of light, photoreactivation and nucleotide excision repair (NER). While photoreactivation allows direct repair by photolyase enzymes using light energy, NER requires a stepwise mechanism with several protein complexes acting at the levels of lesion detection, DNA incision and resynthesis. Here we investigated the involvement in NER of DE-ETIOLATED 1 (DET1), an evolutionarily conserved factor that associates with components of the ubiquitylation machinery in plants and mammals and acts as a negative repressor of light-driven photomorphogenic development in Arabidopsis. Evidence is provided that plant DET1 acts with CULLIN4-based ubiquitin E3 ligase, and that appropriate dosage of DET1 protein is necessary for efficient removal of UV photoproducts through the NER pathway. Moreover, DET1 is required for CULLIN4-dependent targeted degradation of the UV-lesion recognition factor DDB2. Finally, DET1 protein is degraded concomitantly with DDB2 upon UV irradiation in a CUL4-dependent mechanism. Altogether, these data suggest that DET1 and DDB2 cooperate during the excision repair process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.