Abstract. In this paper we define and study a finite volume scheme for a concrete carbonation model proposed by Aiki and Muntean in [Adv. Math. Sci. Appl. 19 (2009) 109-129]. The model consists in a system of two weakly coupled parabolic equations in a varying domain whose length is governed by an ordinary differential equation. The numerical sheme is obtained by a Euler discretisation in time and a Scharfetter-Gummel discretisation in space. We establish the convergence of the scheme. As a by-product, we obtain existence of a solution to the model. Finally, some numerical experiments show the efficiency of the scheme.
In this paper, we are interested in the long time behavior of approximate solutions to a free boundary model which appears in the modeling of concrete carbonation [1]. In particular, we study the long time regime of the moving interface. The numerical solutions are obtained by an implicit in time and finite volume in space scheme. We show the existence of solutions to the scheme and, following [2‐3], we prove that the approximate free boundary increases in time following a t‐law. Finally, we supplement the study through numerical experiments.
A finite-volume scheme for a cross-diffusion model arising from the mean-field limit of an interacting particle system for multiple population species is studied. The existence of discrete solutions and a discrete entropy production inequality is proved. The proof is based on a weighted quadratic entropy that is not the sum of the entropies of the population species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.