There are gender-associated differences in blood pressure (BP) in humans, with men having higher BP than age-matched pre-menopausal women and being at greater risk for cardiovascular and renal diseases. The mechanisms responsible for the gender differences in BP control and regulation are not clear, although there is some evidence that interactions between sex hormones and the kidneys could play a role. However, the response to salt in pre- and post-menopausal women, and in particular the influence of exogenous and endogenous female sex hormones on renal hemodynamics and tubular segmental sodium handling, have been poorly investigated. Recently we have shown that both endogenous and exogenous female sex hormones markedly influence the systemic and renal hemodynamic response to salt. We have found that BP in young normotensive women, regardless of oral contraceptive use, is rather insensitive to salt. However, the renal hemodynamic and the tubular responses to salt vary significantly during the normal menstrual cycle and with the administration of oral contraceptives. Furthermore, after the menopause, BP tends to become salt sensitive, a pattern that could be due to aging as well as to the modification of the sex hormone profile. These observations provide new insights pertaining to potential mechanisms explaining the lower incidence of cardiovascular disease and progression of renal disease in pre-menopausal women (which tend to disappear with the menopause); these observations also emphasize the importance of considering more carefully the phase of the menstrual cycle whenever conducting physiologic studies in women and enrolling women in clinical studies. Finally, increased salt sensitivity in menopausal women strongly encourages the use of diuretics.
We did a subject-level meta-analysis of the changes (Δ) in blood pressure (BP) observed 3 and 6 months after renal denervation (RDN) at 10 European centers. Recruited patients (n=109; 46.8% women; mean age 58.2 years) had essential hypertension confirmed by ambulatory BP. From baseline to 6 months, treatment score declined slightly from 4.7 to 4.4 drugs per day. Systolic/diastolic BP fell by 17.6/7.1 mm Hg for office BP, and by 5.9/3.5, 6.2/3.4, and 4.4/2.5 mm Hg for 24-h, daytime and nighttime BP (P⩽0.03 for all). In 47 patients with 3- and 6-month ambulatory measurements, systolic BP did not change between these two time points (P⩾0.08). Normalization was a systolic BP of <140 mm Hg on office measurement or <130 mm Hg on 24-h monitoring and improvement was a fall of ⩾10 mm Hg, irrespective of measurement technique. For office BP, at 6 months, normalization, improvement or no decrease occurred in 22.9, 59.6 and 22.9% of patients, respectively; for 24-h BP, these proportions were 14.7, 31.2 and 34.9%, respectively. Higher baseline BP predicted greater BP fall at follow-up; higher baseline serum creatinine was associated with lower probability of improvement of 24-h BP (odds ratio for 20-μmol l−1 increase, 0.60; P=0.05) and higher probability of experiencing no BP decrease (OR, 1.66; P=0.01). In conclusion, BP responses to RDN include regression-to-the-mean and remain to be consolidated in randomized trials based on ambulatory BP monitoring. For now, RDN should remain the last resort in patients in whom all other ways to control BP failed, and it must be cautiously used in patients with renal impairment.
Renal Doppler was introduced in the 1980s to screen for renovascular disease and detect renal artery stenosis. 1It was also studied as a potential tool to improve the assessment of renal obstruction or transplant dysfunction. 2 The renal resistive index (RRI) obtained by the Doppler arterial waveform analysis is the most popular measure described in these pathologies. 3 It is a noninvasive and reproducible measure to investigate renal hemodynamics, 4 calculated from the peak systolic and end-diastolic velocities using the following equation: ([peak systolic velocity−end-diastolic velocity]/peak systolic velocity). RRI is based on the changes in flow velocity created by the pulsatile arterial perfusion and can be used as an estimate of renal arterial resistance. For instance, vasomotor stimuli such as sympathetic activation or fluid load can induce changes in the RRI that indirectly reflect changes in the renal vascular resistance.5 Drugs affecting arteriolar vasomotor properties, such as nitroglycerine or captopril, have also been reported to change RRI. 6,7 However, a preserved vascular compliance seems to be necessary for vascular resistance to affect RRI. 8 Hence, with increasing downstream resistance, the diastolic velocity falls relative to systolic value, and RRI increases. In contrast, in the presence of a significant (>70%) main artery stenosis, the diastolic blood flow is less affected, but a slower systole with a dampened waveform (called parvus tardus) is observed, resulting in a decreased RRI value. 9 Even with the widespread use of RRI, reference values and systematic factors influencing measurement values are not well known. Only small-sized studies have evaluated Abstract-Increased renal resistive index (RRI) has been recently associated with target organ damage and cardiovascular or renal outcomes in patients with hypertension and diabetes mellitus. However, reference values in the general population and information on familial aggregation are largely lacking. We determined the distribution of RRI, associated factors, and heritability in a population-based study. Families of European ancestry were randomly selected in 3 Swiss cities. Anthropometric parameters and cardiovascular risk factors were assessed. A renal Doppler ultrasound was performed, and RRI was measured in 3 segmental arteries of both kidneys. We used multilevel linear regression analysis to explore the factors associated with RRI, adjusting for center and family relationships. Sex-specific reference values for RRI were generated according to age. Heritability was estimated by variance components using the ASSOC program (SAGE software). Four hundred women (mean age±SD, 44.9±16.7 years) and 326 men (42.1±16.8 years) with normal renal ultrasound had mean RRI of 0.64±0.05 and 0.62±0.05, respectively (P<0.001). In multivariable analyses, RRI was positively associated with female sex, age, systolic blood pressure, and body mass index. We observed an inverse correlation with diastolic blood pressure and heart rate. Age had a nonli...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.