Homogenization of the equations of motion for a three-dimensional periodic elastic system is considered. Expressions are obtained for the fully dynamic effective material parameters governing the spatially averaged fields by using the plane wave expansion method. The effective equations are of Willis form with coupling between momentum and stress and tensorial inertia. The formulation demonstrates that the Willis equations of elastodynamics are closed under homogenization. The effective material parameters are obtained for arbitrary frequency and wavenumber combinations, including but not restricted to Bloch wave branches for wave propagation in the periodic medium. Numerical examples for a one-dimensional system illustrate the frequency dependence of the parameters on Bloch wave branches and provide a comparison with an alternative dynamic effective medium theory, which also reduces to Willis form but with different effective moduli.
A method to derive homogeneous effective constitutive equations for periodically layered elastic media is proposed. The crucial and novel idea underlying the procedure is that the coefficients of the dynamic effective medium can be associated with the matrix logarithm of the propagator over a unit period. The effective homogeneous equations are shown to have the structure of a Willis material, characterized by anisotropic inertia and coupling between momentum and strain, in addition to effective elastic constants. Expressions are presented for the Willis material parameters which are formally valid at any frequency and horizontal wavenumber as long as the matrix logarithm is well defined. The general theory is exemplified for scalar SH motion. Low frequency, long wavelength expansions of the effective material parameters are also developed using a Magnus series, and explicit estimates are derived for the rate of convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.