Aluminum alloys based on the Al-Ge-Si system with a germanium content of up to 40 wt.%, promising for the brazing of aluminum alloy AA6082 with the stainless steel AISI 304, were studied. The temperature characteristics and microstructural and mechanical properties of the filler alloys were systematically investigated. Differential scanning calorimetry showed that with an increase in the germanium content from 28.0 to 40.0 wt.%, the liquidus temperature of the filler alloys decreased from 514.8 to 474.3 °C. X-ray diffraction analysis and electron microscopy data showed that the foil of the filler alloys reveals a homogeneous structure. The ingots of the alloys contain two eutectics, the first of which consists of a solid solution of (Al, Ge) with a solid solution of (Ge, Si), and the second consists of a solid solution of (Al, Ge) with a solid solution based on (Ge). When the content of germanium increases from 28.0 to 40.0 wt.%, a separation of the faceted solid solution particles (Ge, Si) and an increase in their number could be observed. Nanohardness measurements showed that the (Ge, Si) and (Ge) solid solutions had similar nanohardness, with values of 11.6 and 10.2 GPa, respectively. Simultaneously, the Al solid solution and the intermetallic Al7Ge2Fe phase exhibited significantly lower nanohardness values of 0.7 and 6.7 GPa, respectively. Brinell hardness measurements showed that the ingots of the filler alloys were sufficiently ductile and had a hardness comparable to that of AA6082, which is used for brazing with AISI 304 stainless steel. The obtained results for the studied ingots and the rapidly quenched foils can be used to predict the forming structure of the seam after brazing and adjusted for diffusion processes occurring between the brazed materials and the studied filler alloys.
An Al-40.0Ge-3.4Si wt.% alloy foil with a thickness of 50 ± 5 μm, obtained via an ultrafast solidification method, is described in this work. A complete wetting of the aluminum alloy substrate with a wetting angle of 0° is observed, and the formation of a drop with a wetting angle of 30 ± 5° is observed on the steel substrate. Similar and dissimilar brazed joints of aluminum alloy AA 6082 and stainless-steel AISI 304 are obtained. The microstructure of the AA 6082/AA 6082 brazed seam is homogeneous and contains particles of an Al7Fe2Si system intermetallic compound and particles of an Al-Ge eutectic composition. The brazed seam of the AISI 304/AISI 304 joint is formed due to the formation of the Al8Fe2(Si, Cr) intermetallic compound reaction layer on the steel surface. The proposed scheme for the AISI 304/AA 6082 brazed joint formation is given. The brazed seam represents the Al8Fe2(Si, Cr) reaction layer on the steel surface, the thickness of which depends on the holding time during brazing, and the aluminum matrix of which has particles of a composition close to an Al-Ge eutectic. The obtained results could be used for the optimization of time–temperature brazing modes in order to improve the mechanical characteristics of AISI 304/AA 6082 dissimilar joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.