A compendium of all the volatile organic compounds (VOCs) emanating from the human body (the volatolome) is for the first time reported. 1840 VOCs have been assigned from breath (872), saliva (359), blood (154), milk (256), skin secretions (532) urine (279), and faeces (381) in apparently healthy individuals. Compounds were assigned CAS registry numbers and named according to a common convention where possible. The compounds have been grouped into tables according to their chemical class or functionality to permit easy comparison. Some clear differences are observed, for instance, a lack of esters in urine with a high number in faeces. Careful use of the database is needed. The numbers may not be a true reflection of the actual VOCs present from each bodily excretion. The lack of a compound could be due to the techniques used or reflect the intensity of effort e.g. there are few publications on VOCs from blood compared to a large number on VOCs in breath. The large number of volatiles reported from skin is partly due to the methodologies used, e.g. collecting excretions on glass beads and then heating to desorb VOCs. All compounds have been included as reported (unless there was a clear discrepancy between name and chemical structure), but there may be some mistaken assignations arising from the original publications, particularly for isomers. It is the authors' intention that this database will not only be a useful database of VOCs listed in the literature, but will stimulate further study of VOCs from healthy individuals. Establishing a list of volatiles emanating from healthy individuals and increased understanding of VOC metabolic pathways is an important step for differentiating between diseases using VOCs.
A new non-invasive and potentially inexpensive frontier in the diagnosis of cancer relies on the detection of volatile organic compounds (VOCs) in exhaled breath samples. Breath can be sampled and analyzed in real-time, leading to fascinating and cost-effective clinical diagnostic procedures. Nevertheless, breath analysis is a very young field of research and faces challenges, mainly because the biochemical mechanisms behind the cancer-related VOCs are largely unknown. In this review, we present a list of 115 validated cancer-related VOCs published in the literature during the past decade, and classify them with respect to their "fat-to-blood" and "blood-to-air" partition coefficients. These partition coefficients provide an estimation of the relative concentrations of VOCs in alveolar breath, in blood and in the fat compartments of the human body. Additionally, we try to clarify controversial issues concerning possible experimental malpractice in the field, and propose ways to translate the basic science results as well as the mechanistic understanding to tools (sensors) that could serve as point-of-care diagnostics of cancer. We end this review with a conclusion and a future perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.