This study describes a new convenient method for the photocatalytic generation of glycosyl fluorides using sulfur(VI) hexafluoride as an inexpensive and safe fluorinating agent and 4,4′dimethoxybenzophenone as a readily available organic photocatalyst. This mild method was employed to generate 16 different glycosyl fluorides, including the substrates with acid and base labile functionalities, in yields of 43%−97%, and it was applied in continuous flow to accomplish fluorination on an 7.7 g scale and 93% yield.
The first application of multicomponent chemistry (the Castagnoli-Cushman reaction) toward the convenient one-step preparation of cyclic hydroxamic acids is described. Cyclic hydroxamic acids are close analogues of bacterial siderophores (iron-binding compounds) and form stable complexes with Fe ions as confirmed by spectrophotometric measurements. These compounds are potential components for the design of chelating agents for iron overload disease therapy, as well as siderophore-based carrier systems for antibiotic delivery across the bacterial cell wall.
Human thioredoxin reductase 1 (TrxR1) is a selenocysteine-containing enzyme which plays a crucial role in regulating numerous redox signalling pathways within the cell. While its functioning is important in all cells, levels of TrxR1 expression are higher in cancer cells, possibly as an adaptation to much higher levels of reactive oxygen species and the need for more extensive DNA synthesis. This makes TrxR1 an attractive target for cancer therapy development. Inspired by the structure of disulphide compounds which have advanced through various stages of clinical development, we designed a series of dithiodiglycolic acid derivatives. These were prepared from respective thiol synthons using an iodine- or benzotriazolyl chloride-promoted oxidative disulphide bond formation. Inhibition of TrxR present in cell lysates from human neuroblastoma cells (SH-SY5Y) and rat liver cells indicated several compounds with a potential for TrxR inhibition. Some of these compounds were also tested for growth inhibition against two human cancer cell lines and normal human keratinocytes.
We demonstrate herein the capacity of simple carboxylate salts -tetrametylammonium and tetramethylguanidinium pivalate -to act as catalysts in the isomerization of β,γ-unsaturated thioesters to α,β-unsaturated thioesters. The carboxylate catalysts gave reaction rates comparable to those obtained with DBU, but with fewer side reactions. The reaction exhibits a normal secondary kinetic isotope effect (k 1H /k 1D = 1.065 � 0.026) with a β,γ-deuterated substrate. Computational analysis of the mechanism provides a similar value (k 1H /k 1D = 1.05) with a mechanism where γreprotonation of the enolate intermediate is rate determining.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.