Cloud computing is a recent advancement wherein IT infrastructure and applications are provided as ‘services’ to end‐users under a usage‐based payment model. It can leverage virtualized services even on the fly based on requirements (workload patterns and QoS) varying with time. The application services hosted under Cloud computing model have complex provisioning, composition, configuration, and deployment requirements. Evaluating the performance of Cloud provisioning policies, application workload models, and resources performance models in a repeatable manner under varying system and user configurations and requirements is difficult to achieve. To overcome this challenge, we propose CloudSim: an extensible simulation toolkit that enables modeling and simulation of Cloud computing systems and application provisioning environments. The CloudSim toolkit supports both system and behavior modeling of Cloud system components such as data centers, virtual machines (VMs) and resource provisioning policies. It implements generic application provisioning techniques that can be extended with ease and limited effort. Currently, it supports modeling and simulation of Cloud computing environments consisting of both single and inter‐networked clouds (federation of clouds). Moreover, it exposes custom interfaces for implementing policies and provisioning techniques for allocation of VMs under inter‐networked Cloud computing scenarios. Several researchers from organizations, such as HP Labs in U.S.A., are using CloudSim in their investigation on Cloud resource provisioning and energy‐efficient management of data center resources. The usefulness of CloudSim is demonstrated by a case study involving dynamic provisioning of application services in the hybrid federated clouds environment. The result of this case study proves that the federated Cloud computing model significantly improves the application QoS requirements under fluctuating resource and service demand patterns. Copyright © 2010 John Wiley & Sons, Ltd.
Cloud computing has become a part of everyone's life now. So researchers have immense interest in cloud performance and security. For security and to provide single system image so that user gets an illusion that everything is stored at his own system cloud uses concept of virtualization. For that different virtual machines (VMs) runs on same or different servers. These VMs can be migrated from one server to another. VM migration and power consumption on cloud has been a trending area of research. In this paper a survey in done on VM migration techniques with keeping power consumption in mind. So in this paper green algorithm for VM migration are discussed.
a b s t r a c tCloud computing offers utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of electrical energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only minimize operational costs but also reduce the environmental impact. In this paper, we define an architectural framework and principles for energy-efficient Cloud computing. Based on this architecture, we present our vision, open research challenges, and resource provisioning and allocation algorithms for energy-efficient management of Cloud computing environments. The proposed energy-aware allocation heuristics provision data center resources to client applications in a way that improves energy efficiency of the data center, while delivering the negotiated Quality of Service (QoS). In particular, in this paper we conduct a survey of research in energy-efficient computing and propose: (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering QoS expectations and power usage characteristics of the devices; and (c) a number of open research challenges, addressing which can bring substantial benefits to both resource providers and consumers. We have validated our approach by conducting a performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant cost savings and demonstrates high potential for the improvement of energy efficiency under dynamic workload scenarios.
Traditionally, the development of computing systems has been focused on performance improvements driven by the demand of applications from consumer, scientific and business domains. However, the ever increasing energy consumption of computing systems has started to limit further performance growth due to overwhelming electricity bills and carbon dioxide footprints. Therefore, the goal of the computer system design has been shifted to power and energy efficiency. To identify open challenges in the area and facilitate future advancements it is essential to synthesize and classify the research on power and energy-efficient design conducted to date. In this work we discuss causes and problems of high power / energy consumption, and present a taxonomy of energy-efficient design of computing systems covering the hardware, operating system, virtualization and data center levels. We survey various key works in the area and map them to our taxonomy to guide future design and development efforts. This chapter is concluded with a discussion of advancements identified in energy-efficient computing and our vision on future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.