A semiclassical approach based on the WKB–Maslov method is developed for the kinetic ionization equation in dense plasma with approximations characteristic of metal vapor active media excited by a contracted discharge. We develop the technique for constructing the leading term of the semiclassical asymptotics of the Cauchy problem solution for the kinetic equation under the supposition of weak diffusion. In terms of the approach developed, the local cubic nonlinear term in the original kinetic equation is considered in a nonlocal form. This allows one to transform the nonlinear nonlocal kinetic equation to an associated linear partial differential equation with a given accuracy of the asymptotic parameter using the dynamical system of moments of the desired solution of the equation. The Cauchy problem solution for the nonlinear nonlocal kinetic equation can be obtained from the solution of the associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation. Within the developed approach, the plasma relaxation in metal vapor active media is studied with asymptotic solutions expressed in terms of higher transcendental functions. The qualitative analysis of such the solutions is given.
We propose an approach to constructing semiclassical solutions for the generalized multidimensional Gross–Pitaevskii equation with a nonlocal interaction term. The key property of the solutions is that they are concentrated on a one-dimensional manifold (curve) that evolves over time. The approach reduces the Cauchy problem for the nonlocal Gross–Pitaevskii equation to a similar problem for the associated linear equation. The geometric properties of the resulting solutions are related to Maslov’s complex germ, and the symmetry operators of the associated linear equation lead to the approximation of the symmetry operators for the nonlocal Gross–Pitaevskii equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.