Beta amyloid is one of the major histopathological hallmarks of Alzheimer's disease. We recently reported in vivo imaging of amyloid in 16 Alzheimer patients, using the PET ligand N-methyl[11C]2-(4'-methylaminophenyl)-6-hydroxy-benzothiazole (PIB). In the present study we rescanned these 16 Alzheimer patients after 2.0 +/- 0.5 years and have described the interval change in amyloid deposition and regional cerebral metabolic rate for glucose (rCMRGlc) at follow-up. Sixteen patients with Alzheimer's disease were re-examined by means of PET, using PIB and 2-[18F]fluoro-2-deoxy-d-glucose (FDG) after 2.0 +/- 0.5 years. The patients were all on cholinesterase inhibitor treatment and five also on treatment with the N-methyl-d-aspartate (NMDA) antagonist memantine. In order to estimate the accuracy of the PET PIB measurements, four additional Alzheimer patients underwent repeated examinations with PIB within 20 days (test-retest). Relative PIB retention in cortical regions differed by 3-7% in the test-retest study. No significant difference in PIB retention was observed between baseline and follow-up while a significant (P < 0.01) 20% decrease in rCMRGlc was observed in cortical brain regions. A significant negative correlation between rCMRGlc and PIB retention was observed in the parietal cortex in the Alzheimer patients at follow-up (r = 0.67, P = 0.009). A non-significant decline in Mini-Mental State Examination (MMSE) score from 24.3 +/- 3.7 (mean +/- standard deviation) to 22.7 +/- 6.1 was measured at follow-up. Five of the Alzheimer patients showed a significant decline in MMSE score of >3 (21.4 +/- 3.5 to 15.6 +/- 3.9, P < 0.01) (AD-progressive) while the rest of the patients were cognitively more stable (MMSE score = 25.6 +/- 3.1 to 25.9 +/- 3.7) (AD-stable) compared with baseline. A positive correlation (P = 0.001) was observed in the parietal cortex between Rey Auditory Verbal Learning (RAVL) test score and rCMRGlc at follow-up while a negative correlation (P = 0.018) was observed between RAVL test and PIB retention in the parietal at follow-up. Relatively stable PIB retention after 2 years of follow-up in patients with mild Alzheimer's disease suggests that amyloid deposition in the brain reaches a plateau by the early clinical stages of Alzheimer's disease and therefore may precede a decline in rCMRGlc and cognition. It appears that anti-amyloid therapies will need to induce a significant decrease in amyloid load in order for PIB PET images to detect a drug effect in Alzheimer patients. FDG imaging may be able to detect a stabilization of cerebral metabolism caused by therapy administered to patients with a clinical diagnosis of Alzheimer's disease.
Fibromyalgia (FM) is a poorly understood chronic condition characterized by widespread musculoskeletal pain, fatigue, and cognitive difficulties. While mounting evidence suggests a role for neuroinflammation, no study has directly provided evidence of brain glial activation in FM. In this study, we conducted a Positron Emission Tomography (PET) study using [C]PBR28, which binds to the translocator protein (TSPO), a protein upregulated in activated microglia and astrocytes. To enhance statistical power and generalizability, we combined datasets collected independently at two separate institutions (Massachusetts General Hospital [MGH] and Karolinska Institutet [KI]). In an attempt to disentangle the contributions of different glial cell types to FM, a smaller sample was scanned at KI with [C]--deprenyl-D PET, thought to primarily reflect astrocytic (but not microglial) signal. Thirty-one FM patients and 27 healthy controls (HC) were examined using [C]PBR28 PET. 11 FM patients and 11 HC were scanned using [C]--deprenyl-D PET. Standardized uptake values normalized by occipital cortex signal (SUVR) and distribution volume (V) were computed from the [C]PBR28 data. [C]--deprenyl-D was quantified using λ k. PET imaging metrics were compared across groups, and when differing across groups, against clinical variables. Compared to HC, FM patients demonstrated widespread cortical elevations, and no decreases, in [C]PBR28 V and SUVR, most pronounced in the medial and lateral walls of the frontal and parietal lobes. No regions showed significant group differences in [C]--deprenyl-D signal, including those demonstrating elevated [C]PBR28 signal in patients (p's ≥ 0.53, uncorrected). The elevations in [C]PBR28 V and SUVR were correlated both spatially (i.e., were observed in overlapping regions) and, in several areas, also in terms of magnitude. In exploratory, uncorrected analyses, higher subjective ratings of fatigue in FM patients were associated with higher [C]PBR28 SUVR in the anterior and posterior middle cingulate cortices (p's < 0.03). SUVR was not significantly associated with any other clinical variable. Our work provides the first in vivo evidence supporting a role for glial activation in FM pathophysiology. Given that the elevations in [C]PBR28 signal were not also accompanied by increased [C]--deprenyl-D signal, our data suggests that microglia, but not astrocytes, may be driving the TSPO elevation in these regions. Although [C]--deprenyl-D signal was not found to be increased in FM patients, larger studies are needed to further assess the role of possible astrocytic contributions in FM. Overall, our data support glial modulation as a potential therapeutic strategy for FM.
Pioneered with the invention of 11 C-Pittsburgh compound B, amyloid-b imaging using PET has facilitated research in Alzheimer disease (AD). This imaging approach has promise for diagnostic purposes and evaluation of disease-modifying therapies. Broad clinical use requires an 18 F-labeled amyloid-b radioligand with high specific and low nonspecific binding. The aim of the present PET study was to examine the radioligand 18 F-AZD4694 in human subjects. Methods: Six control subjects and 10 clinically diagnosed AD patients underwent PET examination with 18 F-AZD4694 and a structural MRI scan. Of these, 4 controls and 4 patients underwent a second PET examination for test-retest analysis. Arterial sampling was done to derive a metabolite-corrected plasma input function for traditional compartment modeling. Besides, several simplified quantitative approaches were applied, including the reference Logan approach and simple ratio methods. Results: After intravenous injection of 18 F-AZD4694, radioactivity appeared rapidly in brain. In patients, radioactivity was high in regions expected to contain amyloid-b, whereas in controls, radioactivity was low and homogenously distributed. Binding in cerebellum, a reference region, was low and similar between the groups. Specific binding was reversible and peaked at about 27 min after injection in regions with high radioactivity. The time-activity curves could be described using the 2-tissuecompartment model. Distribution volume ratio estimates obtained using compartment models and simplified methods were highly correlated. Standardized uptake value ratios calculated at late times and distribution volume ratios estimated with the reference Logan approach were, in gray matter, significantly lower in control subjects (1. Al zheimer disease (AD) was identified more than a century ago on the basis of histopathologic observations. The diagnosis of AD, however, is a clinical challenge, and a definite diagnosis can still only be made after death. In clinical research on AD, the search for sensitive and specific in vivo biomarkers has thus been given high priority. A promising recent approach is the use of PET and radiolabeled ligands targeting amyloid-b deposits in the brain. The first and so-far most successful radioligand is 11 C-labeled 2-[49-(methylamino) phenyl]-6-hydroxybenzothiazole ( 11 C-PIB), which binds predominantly to amyloid-b plaques in the human brain (1). Initial studies have shown that control subjects (CSs) and AD patients can be separated on the basis of their amyloid-b load (2). Subsequently, in vivo amyloid-b imaging has been applied in research on early AD diagnosis (3), evaluation of longitudinal progression of disease (4), and evaluation of new disease-modifying therapies (5).This first generation of amyloid-b radioligands has thereby opened a new field of neuroimaging research. Radioligands such as 11 C-PIB have affinity for amyloid-b in the low-nanomolar range, and a favorable near-stable signal-to-background ratio is obtained during the later phase of data acq...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.