Purpose: To provide proof of principle of safety, breast tumorspecific uptake, and positive tumor margin assessment of the systemically administered near-infrared fluorescent tracer bevacizumab-IRDye800CW targeting VEGF-A in patients with breast cancer.Experimental Design: Twenty patients with primary invasive breast cancer eligible for primary surgery received 4.5 mg bevacizumab-IRDye800CW as intravenous bolus injection. Safety aspects were assessed as well as tracer uptake and tumor delineation during surgery and ex vivo in surgical specimens using an optical imaging system. Ex vivo multiplexed histopathology analyses were performed for evaluation of biodistribution of tracer uptake and coregistration of tumor tissue and healthy tissue.
Fluorescence imaging is currently attracting much interest as a method for intraoperative tumor detection, but most current tracers lack tumor specificity. Therefore, this technique can be further improved by tumor-specific detection. With tumortargeted antibodies bound to a radioactive label, tumor-specific SPECT or PET is feasible in the clinical setting. The aim of the present study was to apply antibody-based tumor detection to intraoperative optical imaging, using preclinical in vivo mouse models. Methods: Anti-vascular endothelial growth factor (VEGF) antibody bevacizumab and anti-human epidermal growth factor receptor (HER) 2 antibody trastuzumab were labeled with the near-infrared (NIR) fluorescence dye IRDye 800CW. Tumor uptake of the fluorescent tracers and their 89 Zr-labeled radioactive counterparts for PET was determined in human xenograft-bearing athymic mice during 1 wk after tracer injection, followed by ex vivo biodistribution and pathologic examination. Intraoperative imaging of fluorescent VEGF-or HER2-positive tumor lesions was performed in subcutaneous tumors and in intraperitoneal dissemination tumor models. Results: Tumorto-background ratios, with fluorescent imaging, were 1.93 6 0.40 for bevacizumab and 2.92 6 0.29 for trastuzumab on day 6 after tracer injection. Real-time intraoperative imaging detected tumor lesions at even the submillimeter level in intraperitoneal dissemination tumor models. These results were supported by standard histology, immunohistochemistry, and fluorescence microscopy analyses. Conclusion: NIR fluorescence-labeled antibodies targeting VEGF or HER2 can be used for highly specific and sensitive detection of tumor lesions in vivo. These preclinical findings encourage future clinical studies with NIR fluorescence-labeled tumor-specific antibodies for intraoperative-guided surgery in cancer patients.
Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD‐1) and programmed death‐ligand 1 (PD‐L1) have improved the survival of patients with non‐small cell lung cancer (NSCLC). Still, many patients do not respond to these inhibitors. PD‐L1 (CD274) expression, one of the factors that influences the efficacy of immune checkpoint inhibitors, is dynamic. Here, we studied the regulation of PD‐L1 expression in NSCLC without targetable genetic alterations in EGFR, ALK, BRAF, ROS1, MET, ERBB2 and RET. Analysis of RNA sequencing data from these NSCLCs revealed that inferred IFNγ, EGFR and MAPK signaling correlated with CD274 gene expression in lung adenocarcinoma. In a representative lung adenocarcinoma cell line panel, stimulation with EGF or IFNγ increased CD274 mRNA and PD‐L1 protein and membrane levels, which were further enhanced by combining EGF and IFNγ. Similarly, tumor cell PD‐L1 membrane levels increased after coculture with activated peripheral blood mononuclear cells. Inhibition of the MAPK pathway, using EGFR inhibitors cetuximab and erlotinib or the MEK 1 and 2 inhibitor selumetinib, prevented EGF‐ and IFNγ‐induced CD274 mRNA and PD‐L1 protein and membrane upregulation, but had no effect on IFNγ‐induced MHC‐I upregulation. Interestingly, although IFNγ increases transcriptional activity of CD274, MAPK signaling also increased stabilization of CD274 mRNA. In conclusion, MAPK pathway activity plays a key role in EGF‐ and IFNγ‐induced PD‐L1 expression in lung adenocarcinoma without targetable genetic alterations and may present a target to improve the efficacy of immunotherapy. © 2019 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.