The effect of chemical treatment of hemp hurds slices in three solutions (EDTA (Ethylenediaminetetraacetic acid), NaOH and Ca(OH)2) on the properties of natural material was discussed in this paper. Changes in the morphology, chemical composition and structure as well as thermal stability of hemp hurds before and after their modification were investigated by using FTIR (Fourier transform infrared spectroscopy), XRD (X-ray powder diffraction analysis) and TG (thermogravimetry)/DSC (differential scanning calorimetry). Size exclusion chromatography (SEC) measurements were used for determination of degree of cellulose polymerization of hemp hurd samples. Chemical modification is related to the partial removal of non-cellulosic components of lignin, hemicellulose and pectin as well as waxes from the surface of hemp hurd slices. Another effect of the chemical treatment applied is connected with increasing the crystallinity index of cellulose determined by FTIR and XRD methods. Decrease in degree of cellulose polymerization and polydispersity index in chemically modified hemp hurds compared to the original sample was observed. Increase in thermal stability of treated hemp hurd was found. The most significant changes were observed in alkaline treated hemp hurds by NaOH.
Sustainability goals are essential driving principles for the development of innovative materials in the construction industry. Natural fibers represent an attractive alternative as reinforcing material due to good mechanical properties and sustainability prerequisites. The study has been focused on the comparative investigation of chemical and physical treatments of hemp hurds and their influence on the thermal behavior of main hemp constituents in air and nitrogen atmosphere. Thermal decomposition of hemp hurds involves several parallel reactions related to heat and mass transfer processes. A comparison of DSC and TG/ DTG results of hemp hurds samples before and after treatments demonstrates a better thermal stability for treated samples. It is caused by changes in chemical composition due to a partial removal of non-cellulosic components from hemp hurds structure, an increase in cellulose content and decrease in its degree of polymerization. The results show different thermal behavior of the hurds samples heated under nitrogen and air atmosphere. Based on DTG records, several-stage process of mass loss has been found for the samples under air, whereas only two-stage process under nitrogen.
In this paper, water sorption behavior of 28 days hardened composites based on hemp hurds and inorganic binder was studied. Two kinds of absorption tests on dried cube specimens in deionized water bath at laboratory temperature were performed. Short-term (after one hour water immersion) and long-term (up to 180 days) water absorption tests were carried out to study their durability. Short-term water sorption behavior of original hemp hurds composites depends on mean particle length of hemp and on binder nature. The comparative study of long-term water sorption behavior of composites reinforced with original and chemically modified hemp hurds in three reagents confirmed that surface treatment of filler influences sorption process. Based on evaluation of sorption curves using a model for composites based on natural fibers, diffusion of water molecules in composite reinforced with original and chemically modified hemp hurds is anomalous in terms of the Fickian behavior. The most significant decrease in hydrophility of hemp hurds was found in case of hemp hurds modified by NaOH and it relates to change in the chemical composition of hemp hurds, especially to a decrease in average degree of cellulose polymerization as well as hemicellulose content.
A direct method of measuring the pH value of wood substance is proposed in the paper. The achieved results were completed by determining the pH value on the wood surface using the contact method. Moreover, the results were compared to the results achieved using the indirect methods to determine the pH value in cold water, as well as hot water, extract of wood. Using the direct method for measuring the pH value in drilled fresh sawdust, the pH value of beech was 5.11, of birch was 5.29, of alder was 4.88, and of maple was 4.65. Following the achieved results, the possibility to measure the pH value using a fast, accurate method useful in practice complying with the condition of the minimum free water in wood (moisture content of wood above the fibre saturation point) was presented. The results of measurements of the pH value using the contact method on the wood surface showed that this method can be used in the case of coniferous as well as broadleaved trees with heartwood. The value of pH measured on the surface of pine was 4.50, of spruce was 4.79, of the heartwood of oak was 3.46, and of the sapwood of oak 5.04. The measurement of pH values of water extracts confirmed great dependence of measured values on the conditions of wood extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.