B-decay data from the Belle experiment at the KEKB collider have a substantial background from e + e − → qq events. To suppress this we employ deep neural network algorithms. These provide improved signal from background discrimination. However, the deep neural network develops a substantial correlation with the ∆E kinematic variable used to distinguish signal from background in the final fit due to its relationship with input variables. The effect of this correlation is reduced by deploying an adversarial neural network. Overall the adversarial deep neural network performs better than a Boosted Decision Tree algorithimn and a commercial package, NeuroBayes, which employs a neural net with a single hidden layer.
B-decay data from the Belle experiment at the KEKB collider have a substantial background from e + e − → qq events. To suppress this we employ deep neural network algorithms. These provide improved signal from background discrimination. However, the deep neural network develops a substantial correlation with the ∆E kinematic variable used to distinguish signal from background in the final fit due to its relationship with input variables. The effect of this correlation is reduced by deploying an adversarial neural network. Overall the adversarial deep neural network performs better than a Boosted Decision Tree algorithimn and a commercial package, NeuroBayes, which employs a neural net with a single hidden layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.