Integrating structural information and metadata, such as gender, social status, or interests, enriches networks and enables a better understanding of the large-scale structure of complex systems. However, existing approaches to augment networks with metadata for community detection only consider immediately adjacent nodes and cannot exploit the nonlocal relationships between metadata and large-scale network structure present in many spatial and social systems. Here, we develop a flow-based community detection framework based on the map equation that integrates network information and metadata of distant nodes and reveals more complex relationships. We analyze social and spatial networks and find that our methodology can detect functional metadata-informed communities distinct from those derived solely from network information or metadata. For example, in a mobility network of London, we identify communities that reflect the heterogeneity of income distribution, and in a European power grid network, we identify communities that capture relationships between geography and energy prices beyond country borders.
New network models of complex systems use layers, state nodes, or hyperedges to capture higher-order interactions and dynamics. Simplifying how the higher-order networks change over time or depending on the network model would be easy with alluvial diagrams, which visualize community splits and merges between networks. However, alluvial diagrams were developed for networks with regular nodes assigned to non-overlapping flat communities. How should they be defined for nodes in layers, state nodes, or hyperedges? How can they depict multilevel, overlapping communities? Here we generalize alluvial diagrams to map change in higher-order networks and provide an interactive tool for anyone to generate alluvial diagrams. We use the alluvial diagram generator in three case studies to illustrate significant changes in the organization of science, the effect of modeling network flows with memory in a citation network and distinguishing multidisciplinary from field-specific journals, and the effects of multilayer representation of a collaboration hypergraph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.