In order to guide the experimental search for parity violation in molecular systems, in part motivated by the possible link to biomolecular homochirality, we present a detailed analysis in a relativistic framework of the mechanism behind the tiny energy difference between enantiomers induced by the weak force. A decomposition of the molecular expectation value into atomic contributions reveals that the effect can be thought of as arising from a specific mixing of valence s(1/2) and p(1/2) orbitals on a single center induced by a chiral molecular field. The intra-atomic nature of the effect is further illustrated by visualization of the electron chirality density and suggests that a simple model for parity violation in molecules may be constructed by combining pre-calculated atomic quantities with simple bonding models. A 2-component relativistic computational procedure is proposed which bridges the relativistic and non-relativistic approaches to the calculation of parity violation in chiral molecules and allows us to explore the single-center theorem in a variational setting.
The appearance of a reaction profile or potential energy surface (PES) associated with the reaction path (defined as the path of steepest descent from the saddle point) depends on the choice of reaction coordinate onto which the intrinsic reaction coordinate is projected. This provides one with the freedom, but also the problem, of choosing the optimal perspective (i.e., the optimal reaction coordinate) for revealing what is essential for understanding the reaction. Here, we address this issue by analyzing a number of different reaction coordinates for the same set of model reactions, namely, prototypical oxidative addition reactions of C−X bonds to palladium. We show how different choices affect the appearance of the PES, and we discuss which qualities make a particular reaction coordinate most suitable for comparing and analyzing the reactions. Furthermore, we show how the transition vector (i.e., the normal mode associated with a negative force constant that leads from the saddle point to the steepest descent paths) can serve as a useful and computationally much more efficient approximation (designated TV-IRC) for full IRC computations, in the decisive region around the transition state.
Small but mighty: An unprecedented large parity-violation energy difference of 0.7 Hz for the N-W stretching frequency of N≡WHClI, which conveniently lies in the CO(2) laser frequency range, is predicted from relativistic density functional theory. This result could lead to the first successful detection of such effects in chiral molecules.
The large parity violation effects predicted for the chiral molecule NWHClI from relativistic density functional theory are shown as a broken mirror image. The energy difference of 0.7 Hz for the N–W stretching frequency, described by P. Schwerdtfeger et al. in their Communication on conveniently lies in the frequency range of CO2 lasers and may be revealed by future high‐resolution spectroscopy experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.