Known as a degenerative joint disorder of advanced age affecting predominantly females, osteoarthritis can develop in younger and actively working people because of activities involving loading and injuries of joints. Collagenase-induced osteoarthritis (CIOA) in a mouse model allowed us to investigate for the first time its effects on key cytoskeletal structures (meiotic spindles and actin distribution) of ovulated mouse oocytes. Their meiotic spindles, actin caps, and chromatin were analyzed by immunofluorescence. A total of 193 oocytes from mice with CIOA and 209 from control animals were obtained, almost all in metaphase I (M I) or metaphase II (MII). The maturation rate was lower in CIOA (26.42% M II) than in controls (55.50% M II). CIOA oocytes had significantly larger spindles (average 37 μm versus 25 μm in controls, p < 0.001 ), with a proportion of large spindles more than 64% in CIOA versus up to 15% in controls ( p < 0.001 ). Meiotic spindles were wider in 68.35% M I and 54.90% M II of CIOA oocytes (mean 18.04 μm M I and 17.34 μm M II versus controls: 11.64 μm M I and 12.64 μm M II), and their poles were approximately two times broader (mean 6.9 μm) in CIOA than in controls (3.6 μm). CIOA oocytes often contained disoriented microtubules. Actin cap was visible in over 91% of controls and less than 20% of CIOA oocytes. Many CIOA oocytes without an actin cap had a nonpolarized thick peripheral actin ring (61.87% of M I and 52.94% of M II). Chromosome alignment was normal in more than 82% in both groups. In conclusion, CIOA affects the cytoskeleton of ovulated mouse oocytes—meiotic spindles are longer and wider, their poles are broader and with disorganized fibers, and the actin cap is replaced by a broad nonpolarized ring. Nevertheless, meiotic spindles were successfully formed in CIOA oocytes and, even when abnormal, allowed correct alignment of chromosomes.
We studied apoptotic fragmentation in ovulated mouse oocytes. Some cells were fixed immediately after isolation, while others were cultured for 3 hours with or without prostaglandin F2 alpha. Membrane organelles, fibrillar actin and DNA were stained with DiOC6, TRITC-phalloidin and Hoechst 33342, respectively. While fragmented cells were generally rare, most of them were in samples treated with prostaglandin F2α, revealing it as a potential inducer of apoptosis. The chromatin had interphase appearance, indicating exit from meiosis or arrest at germinal vesicle stage. Fragmentation tended to be more pronounced in the vicinity of chromatin, which could be explained with the concentration of actin in the cap region. These preliminary data confirm the active participation of cytoplasm in oocyte apoptosis, and suggest that this process could be induced by mediators of inflammation.
The effects of prostaglandin F2α on the cytoskeleton and membrane organelles of oocytes was investigated by culturing ovulated mouse oocytes in its presence (50 or 100 ng/ml) for 3 h. Tubulin, fibrillar actin, membranes and chromatin were visualized by specific antibodies, phalloidin, lipophilic dye DiOC6 and Hoechst 33342, respectively. Control oocytes were characterized by a meiotic spindle with chromosomes aligned at its equator, and a cortical layer of microfilaments with an actin cap. Intracellular membranes were localized mostly in the central region in metaphase I and in a broader volume, but still excluding the cell periphery, in metaphase II, and were slightly concentrated around the chromosomes. In oocytes treated with 50 ng/ml prostaglandin, cortical actin staining was diminished, the membrane distribution was clustered, and chromosomes showed signs of misalignment despite the apparently preserved spindle. In cells treated with 100 ng/ml prostaglandin, both the spindle and the actin cortex had degenerated or disappeared as microscopic objects. Metaphase plates were on average broader and more disorganized than in the 50 ng/ml group, and the distribution of membrane organelles had become uniform. These effects, to our knowledge observed for the first time, did not require presence of the cumulus during the incubation. They could be regarded as acceleration of the oocyte postovulatory aging, in which cytoskeletal deterioration seemed to have a leading role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.