Today, pricing of derivates (particularly options) in financial institutions is a challenge. Besides the increasing complexity of the products, obtaining fair prices requires more realistic (and therefore complex) models of the underlying asset behavior. Not only due to the increasing costs, energy efficient and accurate pricing of these models becomes more and more important. In this paper we present -to the best of our knowledge -the first FPGA based accelerator for option pricing with the state-of-the-art Heston model. It is based on advanced Monte Carlo simulations. Compared to an 8-core Intel Xeon Server running at 3.07GHz, our hybrid FPGA-CPU-system saves 89% of the energy and provides around twice the speed. The same system reduces the energy consumption per simulation to around 40% of a fully-loaded Nvidia Tesla C2050 GPU. For a three-Virtex-5 chip only accelerator, we expect to achieve the same simulation speed as a Nvidia Tesla C2050 GPU, by consuming less than 3% of the energy at the same time.
Nowadays, high-speed computations are mandatory for financial and insurance institutes to survive in competition and to fulfill the regulatory reporting requirements that have just toughened over the last years. A majority of these computations are carried out on huge computing clusters, which are an ever increasing cost burden for the financial industry. There, state-of-the-art CPU and GPU architectures execute arithmetic operations with pre-defined precisions only, that may not meet the actual requirements for a specific application. Reconfigurable architectures like field programmable gate arrays (FPGAs) have a huge potential to accelerate financial simulations while consuming only very low energy by exploiting dedicated precisions in optimal ways.In this work we present a novel methodology to speed up multilevel Monte Carlo (MLMC) simulations on reconfigurable architectures. The idea is to aggressively lower the precisions for different parts of the algorithm without loosing any accuracy at the end. For this, we have developed a novel heuristic for selecting an appropriate precision at each stage of the simulation that can be executed with low costs at runtime. Further, we introduce a cost model for reconfigurable architectures and minimize the cost of our algorithm without changing the overall error.We consider the showcase of pricing Asian options in the Heston model. For this setup we improve one of the most advanced simulation methods by a factor of 3-9x on the same platform.
Nonuniform random numbers are key for many technical applications, and designing efficient hardware implementations of non-uniform random number generators is a very active research field. However, most state-of-the-art architectures are either tailored to specific distributions or use up a lot of hardware resources. At ReConFig 2010, we have presented a new design that saves up to 48% of area compared to state-of-the-art inversion-based implementation, usable for arbitrary distributions and precision. In this paper, we introduce a more flexible version together with a refined segmentation scheme that allows to further reduce the approximation error significantly. We provide a free software tool allowing users to implement their own distributions easily, and we have tested our random number generator thoroughly by statistic analysis and two application tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.