This study investigated the tensile properties and thermal behavior of virgin and hot press molded HDPE composites filled with different particle size and content of used beverage cartons which were the Tetra Pak® cartons. The mechanical properties of the composites were positively influenced by particle size of the used beverage carton, such that the smallest particle size gave the highest tensile strength and tensile modulus. The tensile strength of the specimens decreased with increasing filler content (40 to 70 wt%), while the tensile modulus rose. Furthermore, the filler size and its content affected the thermal behavior of the specimens. Calorimetry analysis of composite specimens showed that melting temperature and enthalpy values of virgin HDPE and recycled-HDPE decreased with increasing Tetra Pak® content. In all composite groups produced by adding Tetra Pak®, the degree of crystallinity decreased as a function of Tetra Pak® addition compared to the pure HDPE. Increasing particle size adversely affected the crystallization degree, which decreased with increasing particle size while the HDPE maintained its crystalline form. As for the recycled-HDPE composites, the degree of crystallization was reduced by increasing the Tetra Pak® content, but this was still noticeably higher than that of the HDPE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.