Within the frames of this study, the synthesis of a permalloy to be used as a filler for magnetoactive and magnetorheological elastomers (MAEs and MREs) was carried out. By means of the mechanochemical method, an alloy with the composition 75 wt.% of Fe and 25 wt.% of Ni was obtained. The powder of the product was utilized in the synthesis of MAEs. Study of the magnetorheological (MR) properties of the elastomer showed that in a ~400 mT magnetic field the shear modulus of the MAE increased by a factor of ~200, exhibiting an absolute value of ~8 MPa. Furthermore, we obtained experimentally a relative high loss factor for the studied composite; this relates to the size and morphology of the synthesized powder. The composite with such properties is a very perspective material for magnetocontrollable damping devices. Under the action of an external magnetic field, chain-like structures are formed inside the elastomeric matrix, which is the main determining factor for obtaining a high MR effect. The effect of chain-like structures formation is most pronounced in the region of small strains, since structures are partially destroyed at large strains. A proposed theoretical model based on chain formation sufficiently well describes the experimentally observed MR effect. The peculiarity of the model is that chains of aggregates of particles, instead of individual particles, are considered.
We present results of theoretical modelling of macroscopic circulating flow induced in a cloud of ferrofluid by an oscillating magnetic field. The cloud is placed in a cylindrical channel filled by a nonmagnetic liquid. The aim of this work is the development of a scientific basis for a progressive method of addressing drug delivery to thrombus clots in blood vessels with the help of the magnetically induced circulation flow. Our results show that the oscillating field can induce, inside and near the cloud, specific circulating flows with the velocity amplitude about several millimetres per second. These flows can significantly increase the rate of transport of the molecular non-magnetic impurity in the channel.
This article is part of the theme issue ‘Transport phenomena in complex systems (part 1)’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.