The synthesis and structural characterization of a series of supramolecular complexes of bicyclic cationic pyridine-fused 1,2,4-selenodiazoles with various anions is reported. The binding of trifluoroacetate, tetrachloroaurate, tetraphenylborate, perrhenate, and pertechnetate anions in the solid state is regarded. All the anions interact with selenodiazolium cations exclusively via a pair of “chelating” Se⋯O and H⋯O non-covalent interactions, which make them an attractive, novel, non-classical supramolecular recognition unit or a synthon. Trifluoroacetate salts were conveniently generated via novel oxidation reaction of 2,2′-dipyridyl diselenide with bis(trifluoroacetoxy)iodo)benzene in the presence of corresponding nitriles. Isolation and structural characterization of transient 2-pyridylselenyl trifluoroacetate was achieved. X-ray analysis has demonstrated that the latter forms dimers in the solid state featuring very short and strong Se⋯O and Se⋯N ChB contacts. 1,2,4-Selenodiazolium trifluoroacetates or halides show good solubility in water. In contrast, (AuCl4)−, (ReO4)−, or (TcO4)− derivatives immediately precipitate from aqueous solutions. Structural features of these supramolecular complexes in the solid state are discussed. The nature and energies of the non-covalent interactions in novel assembles were studied by the theoretical methods. To the best of our knowledge, this is the first study that regards perrhenate and pertechnetate as acceptors in ChB interactions. The results presented here will be useful for further developments in anion recognition and precipitation involving cationic 1,2,4-selenodiazoles.
In this work, O- and N-N-bridging complexes of technetium (V), previously known only for rhenium, were obtained for the first time. Tc(V) complexes with pyridazine (pyd), 1,2,4-triazole (trz), 3,5-dimethylpyrazole (dmpz) and pyrimidine (pyr) were obtained. In three complexes [{TcOCl2}2(μ-O)(μ-pyd)2], [{TcOCl2}2(μ-O)(μ-trz)2]·Htrz·Cl and [{TcO(dmpz)4}(μ-O)(TcOCl4)] two technetium atoms are linked by a Tc-O-Tc bond, and in the first two, Tc atoms are additionally linked by a Tc-N-N-Tc bond through the nitrogen atoms of the aromatic rings. We determined the role of nitrogen atom position in the aromatic ring and the presence of substituents on the formation of such complexes. For the first time, a reaction mechanism for the formation of such complexes was proposed. This article details the crystal structures of four new compounds. The work describes in detail the coordination of Tc atoms in the obtained structures and the regularities of the formation of crystal packings. The spectroscopic properties of the obtained compounds and their mother solutions were studied. The decomposition temperatures of the described complexes were determined. An assumption was made about the oligomerization of three-bridged complexes based on the results of mass spectrometry. Through the analysis of non-valent interactions in the structures, π-stacking, halogen-π and CH-π interactions were found. An analysis of the Hirshfeld surface for [{TcOCl2}2(μ-O)(μ-pyd)2], [{TcOCl2}2(μ-O)(μ-trz)2] and their rhenium analogues showed that the main contribution to the crystalline packing is made by interactions of the type Hal···H/H···Hal (45.4–48.9%), H···H (10.2–15.8%), and O···H/H···O (9.4–16.5%).
This work aimed to synthesize new platinum and uranium compounds with nicotinic acid. In this article we describe the synthesis of two new anionic complexes (HNic)2[PtCl6] and (HNic)2[UO2Cl4] using wet chemistry methods. The structure of the obtained single crystals was established by single-crystal X-ray diffraction. The Hirshfeld surface analysis of the obtained complexes and their analogue (HNic)2[SiF6] was carried out for the analysis of intermolecular interactions. Hydrogen bonds (H···Hal/Hal···H and O···H/H···O) make the main contribution to intermolecular interactions in all compounds. Other important contacts in cations in all compounds are H···H, C···H/H···C and C···Hal/Hal···C; in anions H···Hal/Hal···H. The Pt-containing complex has a halogen-π interaction and halogen bonds, but Si-containing complex has a π–π staking interaction; these types of interactions are not observed in the U-containing compound.
H 2 Gua(ReO 4 ) 2 , HGuaReO 4 and HGuaTcO 4 were first obtained and structurally characterized. Two types of anionic interactions were found in the structure with the twice protonated cation. One type of the rare double-lock interaction of perrhenate anions was found in the case of the singly protonated guanine salt. Singly charged cations are linked by hydrogen bonds into layer. π-Stacking interactions between these layers form 3dimensional frame. Multiple and relatively abundant anion-π interactions are formed in H 2 Gua(ReO 4 ) 2 as compared to HGuaReO 4 and HGuaTcO 4 . Different types of crystal packing are formed in the compounds under research. Hirshfeld surface analysis has given evidence that the main contribution to intermolecular interactions for the cations is made by hydrogen bonds of the O⋅⋅⋅H/H⋅⋅⋅O type in all structures, O⋅⋅⋅C/C⋅⋅⋅O and O⋅⋅⋅N/N⋅⋅⋅O interactions in H 2 Gua(ReO 4 ) 2 , N⋅⋅⋅H/H⋅⋅⋅N and H⋅⋅⋅H interactions in HGuaReO 4 and HGuaTcO 4 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.