The hepatitis C virus (HCV) is a major human pathogen. Genetically related viruses in animals suggest a zoonotic origin of HCV. The closest relative of HCV is found in horses (termed equine hepacivirus [EqHV]). However, low EqHV genetic diversity implies relatively recent acquisition of EqHV by horses, making a derivation of HCV from EqHV unlikely. To unravel the EqHV evolutionary history within equid sister species, we analyzed 829 donkeys and 53 mules sampled in nine European, Asian, African, and American countries by molecular and serologic tools for EqHV infection. Antibodies were found in 278 animals (31.5%), and viral RNA was found in 3 animals (0.3%), all of which were simultaneously seropositive. A low RNA prevalence in spite of high seroprevalence suggests a predominance of acute infection, a possible difference from the mostly chronic hepacivirus infection pattern seen in horses and humans. Limitation of transmission due to short courses of infection may explain the existence of entirely seronegative groups of animals. Donkey and horse EqHV strains were paraphyletic and 97.5 to 98.2% identical in their translated polyprotein sequences, making virus/host cospeciation unlikely. Evolutionary reconstructions supported host switches of EqHV between horses and donkeys without the involvement of adaptive evolution. Global admixture of donkey and horse hepaciviruses was compatible with anthropogenic alterations of EqHV ecology. In summary, our findings do not support EqHV as the origin of the significantly more diversified HCV. Identification of a host system with predominantly
Current knowledge about the expression of ABC transport proteins suggests that their expression is regulated by a variety of factors, including pathological conditions, and in particular inflammatory reactions to infection. As ABC transporters are major determinants of absorption, distribution and excretion of many antimicrobials, modulation of their activity may result in increased or decreased tissue levels of drugs, affecting the efficacy of treatment. As fluoroquinolones have been identified as modulators and substrates of a number of drug transporters, we evaluated the effect of danofloxacin mesylate and enrofloxacin treatment on the levels of expression of MDR1 and MRP2 mRNAs in the intestines and livers of broilers with experimentally induced colibacillosis. MDR1 mRNA expression was significantly decreased in infected animals and was partly restored over 5 days of treatment with orally administered danofloxacin mesylate or enrofloxacin. Changes in the level of expression of MRP2 mRNA were less prominent. The study suggests that the treatment of colibacillosis with fluoroquinolones, which resulted in a significant clinical improvement of the animals, also restored the expression of drug transporters. This is of clinical importance as these ABC transporters significantly contribute to the functionality of important biological barriers, protecting the bird and specific tissues from pathogens and bacterial toxins.
Doxycycline is a well-tolerated tetracycline antibiotic, registered for use in rabbits and administered for treatment of bacterial infections in this animal species. Nevertheless, the available pharmacokinetic data are limited and this study aimed to investigate the pharmacokinetics of orally administered doxycycline in mature and immature rabbits by application of the population approach. The rabbits were treated orally with doxycycline hyclate (5 mg/kg bw) in the form of a solid gelatin capsules. Free plasma concentrations were determined with HPLC analysis with Photodiode array detection. The estimated typical value of volume of distribution (tvV), total body clearance, and absorption rate constant were 4.429 L/kg, 1.473 L/kg/h, and 0.257 h−1, respectively. The highest between-subject variability (BSV) of 69.30% was observed for tvV. Co-variates such as body weight, age, and biochemical parameters did not improve the tested model and did not contribute to explanation of the BSV. The population pharmacokinetic model of the orally administered doxycycline in rabbits should be further developed by addition of data from more animals treated with higher doses. An oral dose of 5 mg/kg could ensure percentage of the time from the dosing interval during which the concentration is above minimum inhibitory concentration (MIC) %fT > MIC of 35% if MIC of 0.18 μg×mL-1 and a dosing interval of 12 h is assumed which does not cover criteria for rational use of antibiotics.
The present study aimed to detect Staphylococcus aureus (S. aureus) among other coagulase positive staphylococci from animal origin by using conventional methods (biochemical tests and latex agglutination) and a molecular method, based on the nuc gene, as the gold standard and to assess the usefulness of these methods. For this purpose, total of 344 staphylococcal isolates were collected and analysed. A total of 156 isolates suspicious for S. aureus were detected by a conventional biochemical method -88 from cows, 18 from goats, 7 from pigs, 17 from poultry, 7 from rabbits and 19 from dogs. The majority of S. aureus strains gave typical biochemical reactions with the exception of 30 (19.2%) and 25 (16%) that were VP negative and weak positive in fermenting mannitol, respectively. Twelve strains were found to be non-haemolytic (7.7%) and four strains did not ferment trehalose (2.6%). Other staphylococci were identified as S. pseudintermedius (n = 103), S. hyicus (n = 23) and the rest were coagulase-negative staphylococci. Latex agglutination test resulted in rapid positive reactions with S. aureus with exception of 5 strains (3.2%) from cow mastitis milk. Positive agglutination reactions were also established with S. pseudintermedius, and S. hyicus. PCR confirmed all strains that were preliminary identified as S. aureus by amplification of 270 bp fragment of nuc gene specific for this species. The atypical reactions in certain strains established in this study have shown that the precise detection of S. aureus from animal origin should be done by combination of conventional and molecular methods.
The aim of this study was to verify whether the human DR-ELISA for the detection of anti-SARS-CoV-2 antibodies can be applied in cats, and to assess the risk factors that determine the spread of the virus among the cat population in Bulgaria. The study included 92 serum samples collected from 68 domestic and 24 stray cats aged from 3 months to 20 years of age in the period of January–June 2021. The samples originated from three regions in Bulgaria and from three places of inhabitance. DR-ELISA based on peroxidase-labeled SARS-CoV-2 N protein was employed to detect IgA, IgG and IgM antibodies in the samples. Subsequently, the results were compared with a commercially available multi-species ELISA kit. There was high seroprevalence (83.33%) in stray cats and 41.18% in domestic cats, confirmed by the human and veterinary ELISA kit. The positive cases in the regional cities were 42.86%, in small towns 50% and in villages 78.26%. Cats under 7 years had a five times higher risk than those over 7 years (p = 0.001). The risk was seven times higher for stray cats than for domestic cats (p = 0.001). In addition, the results indicate that the risk was the highest for cats in villages (p = 0.006) compared to cats in other places of inhabitance. This study demonstrates that human DR-ELISA may be successfully applied to monitor the circulation of SARS-CoV-2 in cats and other susceptible species. Cats might serve as sentinel animals for tracking the virus in nature and in inhabited areas (strays) and to discover asymptomatic cases in humans/owners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.