The efficacy of monosodium glutamate (MSG) as a lixiviant for the selective and sustainable leaching of zinc and copper from electric arc furnace dust was tested. Batch leaching studies and XRD, XRF and SEM-EDS characterization confirmed the high leaching efficiency of zinc (reaching 99%) and copper (reaching 86%) leaving behind Fe, Al, Ca and Mg in the leaching residue. The separation factor (concentration ratio in pregnant leach solution) between zinc vs. other elements, and copper vs. other elements in the optimum condition could reach 11,700 and 250 times, respectively. The optimum conditions for the leaching scheme were pH 9, MSG concentration 1 M and pulp density 50 g/L. Kinetic studies (leaching time and temperature) revealed that the saturation value of leaching efficiency was attained within 2 h for zinc and 4 h for copper. Modeling of the kinetic experimental data indicated that the role of temperature on the leaching process was minor. The study also demonstrated the possibility of MSG recycling from pregnant leach solutions by precipitation as glutamic acid (>90% recovery).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.