Nowadays, there is extensive production and use of plastic materials for different industrial activities. These plastics, either from their primary production sources or through degradation processes of the plastics themselves, can contaminate the ecosystem with micro and nanoplastics. Once in the aquatic environment, these microplastics can be the basis for the adsorption of chemical pollutants, favoring that these chemical pollutants disperse more quickly in the environment and can affect living beings. Due to the lack of information on adsorption, three machine learning models (random forest, support vector machine, and artificial neural network) to predict different microplastic/water partition coefficients (log Kd) were developed using two different approximations (based on the number of input variables). The best-selected machine learning models present, in general, correlation coefficients upper than 0.92 in the query phase, which indicate that these type of models could be used for a rapid estimation of the absorption of organic contaminants on microplastics.
The application of natural colorants is increasing in the food industry because they are considered safer and healthier than some synthetic pigments. Natural colorants can improve the organoleptic properties of foodstuffs, provide additional benefits such as enhance their nutritional value and/or extend shelf-life. Plants, fungi, bacteria or algae naturally produce different natural colorants, including carotenoids. These compounds are classified into two main groups: pure hydrocarbon carotenes (α- and β-carotenes, lycopene) and oxygenated derivatives of xanthophylls (lutein, zeaxanthin, astaxanthin, fucoxanthin, cryptoxanthin, etc.). Carotenoids have been related with beneficial properties like antioxidant, antidiabetic, antitumor or antimicrobial, so they are a natural and healthy alternative to the use of synthetic colorants. Thus, it is critical to optimize their extraction, by utilizing novel and green techniques, and their stability through encapsulation processes. This chapter aims to review natural sources of carotenoids, strategies to efficiently extract and produce them and their potential application as food colorants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.