The vertical distribution and abundance of Gammarus lacustris in the pelagic zone of two fishless meromictic lakes, L. Shira and L. Shunet, in Southern Siberia (Russia), was studied with the underwater video recording system and using vertical hauls. In both lakes, during summer stratification, Gammarus was distributed non-homogenously, with a stable peak in the metalimnion. The average depth of Gammarus population in the pelagic zone was significantly correlated with the depth of the thermocline. Gammarus abundances obtained using vertical plankton hauls with net were quite comparable with those obtained from video records. The peak abundance of Gammarus in the pelagic zone of the lakes observed with underwater video amounted up to 400 individuals m -2 , while the peak animal densities in the metalimnion reached 50 ind. m -3 . The data are compared with previously published abundances of Gammarus in the littoral of Lake Shira. Both littoral and pelagic can be equally important habitats for amphipods in meromictic lakes. The absence of fish in the pelagic zone, high oxygen concentration, low water temperature, increased seston concentration, elevated water density in the metalimnion and the anoxic hypolimnion can be the most probable combination of factors that are responsible for the peak of Gammarus in the metalimnion of these lakes.
Many continental saline lakes are under the effects of salinity increase and anthropogenic eutrophication exacerbated by global change. The response of the food web to these drivers of change is not straightforward. To understand the consequences of salinity and eutrophication interactive effects on the food web, we studied the seasonal dynamics of zooplankton and phytoplankton and water quality parameters in 20 lakes of different salinity (from freshwater to hypersaline) and nutrient status (from oligotrophic to eutrophic) located in southern Siberia. We observed a pronounced bottom-up effect of nutrients, which induced an increase in the biomass of phytoplankton and zooplankton and a decline in water quality. A significant decrease in the species abundance of zooplankton was observed at a threshold salinity of 3 g L−1 and the disappearance of fish at 10 g L−1. The top-down effect induced by salinity manifested itself in an increase in the biomass of zooplankton with the disappearance of fish, and in the change of the size distribution of phytoplankton particles with an increase in the proportion of cladocerans in the zooplankton. Even though we observed that with the salinity increase the food web in saline lakes transformed from three-trophic to two-trophic without fish, we conclude that in the salinity range from 10 to 20–30 g L−1 this transition in most cases will not increase the ability of zooplankton to control phytoplankton. Interactive effects of salinity and eutrophication strongly depend on the size and depth of the lake, as deep stratified lakes tend to have a better water quality with lower biomasses of both phyto- and zooplankton. Thus, the salinity per se is not the driver of the decline in water clarity or the uncontrolled development of phytoplankton. Moreover, for deep lakes, salinity may be a factor affecting the stability of stratification, which mitigates the consequences of eutrophication. Thus, small shallow lakes will be the most vulnerable to the joint effect of salinity increase and eutrophication with the degradation of ecosystem functioning and water quality at moderate salinities of 3–20 g L−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.