A main route for SARS-CoV-2 (severe acute respiratory syndrome coronavirus) transmission involves airborne droplets and aerosols generated when a person talks, coughs, or sneezes. The residence time and spatial extent of these virus-laden aerosols are mainly controlled by their size and the ability of the background flow to disperse them. Therefore, a better understanding of the role played by the flow driven by respiratory events is key in estimating the ability of pathogen-laden particles to spread the infection. Here, we numerically investigate the hydrodynamics produced by a violent expiratory event resembling a mild cough. Coughs can be split into an initial jet stage during which air is expelled through mouth and a dissipative phase over which turbulence intensity decays as the puff penetrates the environment. Time-varying exhaled velocity and buoyancy due to temperature differences between the cough and the ambient air affect the overall flow dynamics. The direct numerical simulation (DNS) of an idealized isolated cough is used to characterize the jet/puff dynamics using the trajectory of the leading turbulent vortex ring and extract its topology by fitting an ellipsoid to the exhaled fluid contour. The three-dimensional structure of the simulated cough shows that the assumption of a spheroidal puff front fails to capture the observed ellipsoidal shape. Numerical results suggest that, although analytical models provide reasonable estimates of the distance traveled by the puff, trajectory predictions exhibit larger deviations from the DNS. The fully resolved hydrodynamics presented here can be used to inform new analytical models, leading to improved prediction of cough-induced pathogen-laden aerosol dispersion.
Airborne particles are a major route for transmission of COVID-19 and many other infectious diseases. When a person talks, sings, coughs, or sneezes, nasal and throat secretions are spewed into the air. After a short initial fragmentation stage, the expelled material is mostly composed of spherical particles of different sizes. While the dynamics of the largest droplets are dominated by gravitational effects, the smaller aerosol particles, mostly transported by means of hydrodynamic drag, form clouds that can remain afloat for long times. In subsaturated air environments, the dependence of pathogen-laden particle dispersion on their size is complicated due to evaporation of the aqueous fraction. Particle dynamics can significantly change when ambient conditions favor rapid evaporation rates that result in a transition from buoyancy-to-drag dominated dispersion regimes. To investigate the effect of particle size and evaporation on pathogen-laden cloud evolution, a direct numerical simulation of a mild cough was coupled with an evaporative Lagrangian particle advection model. The results suggest that while the dispersion of cough particles in the tails of the size distribution are unlikely to be disrupted by evaporative effects, preferential aerosol diameters (30–40 μ m) may exhibit significant increases in the residence time and horizontal range under typical ambient conditions. Using estimations of the viral concentration in the spewed fluid and the number of ejected particles in a typical respiratory event, we obtained a map of viral load per volume of air at the end of the cough and the number of virus copies per inhalation in the emitter vicinity.
Simultaneous velocity and temperature measurements were made with rakes of sensors that sliced a slightly heated turbulent wake in the spanwise direction, at different lateral positions 150 diameters downstream of the cylinder. A pattern recognition analysis of hotter-to-colder transitions was performed on temperature data measured at the mean velocity half-width. The velocity data from the different ‘slices’ was then conditionally averaged based on the identified temperature events. This procedure yielded the topology of the average three-dimensional large-scale structure which was visualized with iso-surfaces of negative values of the second eigenvector of [S2+Ω2]. The results indicate that the average structure of the velocity fluctuations (using a triple decomposition of the velocity field) is found to be a shear-aligned ring-shaped vortex. This vortex ring has strong outward lateral velocities in its symmetry plane which are like Grant's mixing jets. The mixing jet region extends outside the ring-like vortex and is bounded by two foci separated in the spanwise direction and an upstream saddle point. The two foci correspond to what has been previously identified in the literature as the double rollers.The ring vortex extracts energy from the mean flow by stretching in the mixing jet region just upstream of the ring boundary. The production of the small-scale (incoherent) turbulence by the coherent field and one-component energy dissipation rate occur just downstream of the saddle point within the mixing jet region. Incoherent turbulence energy is extracted from the mean flow just outside the mixing jet region, but within the core of the structure. These processes are highly three-dimensional with a spanwise extent equal to the mean velocity half-width.When a double decomposition is used, the coherent structure is found to be a tube-shaped vortex with a spanwise extent of about 2.5l0. The double roller motions are integral to this vortex in spite of its shape. Spatial averages of the coherent velocity field indicate that the mixing jet region causes a deficit of mean streamwise momentum, while the region outside the foci of the double rollers has a relatively small excess of streamwise momentum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.