Fibroblast growth factors (FGFs) are small polypeptide growth factors, all of whom share in common certain structural characteristics, and most of whom bind heparin avidly. Many FGFs contain signal peptides for secretion and are secreted into the extracellular environment, where they can bind to the heparan-like glycosaminoglycans (HLGAGs) of the extracellular matrix (ECM). From this reservoir, FGFs may act directly on target cells, or they can be released through digestion of the ECM or the activity of a carrier protein, a secreted FGF binding protein. FGFs bind specific receptor tyrosine kinases in the context of HLGAGs and this binding induces receptor dimerization and activation, ultimately resulting in the activation of various signal transduction cascades. Some FGFs are potent angiogenic factors and most play important roles in embryonic development and wound healing. FGF signaling also appears to play a role in tumor growth and angiogenesis, and autocrine FGF signaling may be particularly important in the progression of steroid hormone-dependent cancers to a hormone-independent state.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor survival rates and frequently carries oncogenic KRAS mutation. However, KRAS has thus far not been a viable therapeutic target. We found that the abundance of YAP mRNA, which encodes Yes-associated protein (YAP), a protein regulated by the Hippo pathway during tissue development and homeostasis, was increased in human PDAC tissue compared with that in normal pancreatic epithelia. In genetically engineered KrasG12D and KrasG12D: Trp53R172H mouse models, pancreas-specific deletion of Yap halted the progression of early neoplastic lesions to PDAC without affecting normal pancreatic development and endocrine function. Although Yap was dispensable for acinar to ductal metaplasia (ADM), an initial step in the progression to PDAC, Yap was critically required for the proliferation of mutant Kras or Kras:Trp53 neoplastic pancreatic ductal cells in culture and for their growth and progression to invasive PDAC in mice. Yap functioned as a critical transcriptional switch downstream of the oncogenic KRAS–mitogen-activated protein kinase (MAPK) pathway, promoting the expression of genes encoding secretory factors that cumulatively sustained neoplastic proliferation, a tumorigenic stromal response in the tumor microenvironment, and PDAC progression in Kras and Kras: Trp53 mutant pancreas tissue. Together, our findings identified Yap as a critical oncogenic KRAS effector and a promising therapeutic target for PDAC and possibly other types of KRAS-mutant cancers.
Pleiotrophin (PTN) is a secreted growth factor that induces neurite outgrowth and is mitogenic for fibroblasts, epithelial, and endothelial cells. During tumor growth PTN can serve as an angiogenic factor and drive tumor invasion and metastasis. To identify a receptor for PTN, we panned a phage display human cDNA library against immobilized PTN protein as a bait. From this we isolated a phage insert that was homologous to an amino acid sequence stretch in the extracellular domain (ECD) of the orphan receptor tyrosine kinase anaplastic lymphoma kinase (ALK). In parallel with PTN, ALK is highly expressed during perinatal development of the nervous system and down-modulated in the adult. Animal studies demonstrated that PTN can serve as a ratelimiting angiogenic factor during tumor growth, invasion, and metastasis (8 -12). Clinical studies showed elevated serum levels and tumor expression of PTN in samples from patients with colon, stomach, pancreatic, and breast cancer (5, 13). Furthermore, PTN has been implicated in neonatal brain development as well as in neurodegenerative disorders (reviewed in Ref. 14).Obviously, understanding of PTN-mediated signal transduction as well as identification of a receptor for PTN would enhance studies on the biology and pathology of this growth factor family. Our previous studies have shown that the activation of mitogen-activated protein kinase and PI 3-kinase pathways is required for mitogenic activity of PTN, and we had found that the adaptor molecule Shc participated in signal transduction (15). Based on the work of different laboratories in various cell types, it was hypothesized that proteins of 170 -220 kDa that are tyrosine-phosphorylated in response to PTN could be part of the receptor complex (15-17). More recently, several cell membrane-located proteins were shown to bind PTN at low affinity and serve as potential coreceptors or modulators of signal transduction (18 -21), but none of these molecules carried the hallmarks of a signal transducing receptor predicted from the earlier work.To identify a receptor for PTN, we rationalized that panning of a phage display cDNA library against immobilized PTN as a bait would allow us to isolate phage containing a ligand binding fragment of the receptor on their surface. Because of the high levels of expression of PTN during the perinatal development of the nervous system, we hypothesized that fetal brain would most likely also express a PTN receptor. We therefore panned a human fetal brain cDNA phage display library over several rounds against purified PTN that had been tested for biological activity (15). From this we isolated a phage insert homologous to an amino acid sequence stretch in the ECD of the receptor tyrosine kinase anaplastic lymphoma kinase (ALK), a recently described orphan receptor with an apparent molecular mass of
The growth and metastatic spread of cancer is directly related to tumor angiogenesis, and the driving factors need to be understood to exploit this process therapeutically. However, tumor cells and their normal stroma express a multitude of candidate angiogenic factors, and very few specific inhibitors have been generated to assess which of these gene products are only innocent bystanders and which contribute significantly to tumor angiogenesis and metastasis. Here we investigated whether the expression in tumors of a secreted fibroblast growth factor (FGF)-binding protein (FGF-BP) that mobilizes and activates locally stored FGFs (ref. 11) can serve as an angiogenic switch molecule. Developmental expression of the retinoid-regulated FGF-BP gene is prominent in the skin and intestine during the perinatal phase and is down-modulated in the adult. The gene is, however, upregulated in carcinogen-induced skin tumors, in squamous cell carcinoma (SCC) and in some colon cancer cell lines and tumor samples. To assess the significance of FGF-BP expression in tumors, we depleted human SCC (ME-180) and colon carcinoma (LS174T) cell lines of their endogenous FGF-BP by targeting with specific ribozymes. We found that the reduction of FGF-BP reduced the release of biologically active basic FGF (bFGF) from cells in culture. Furthermore, the growth and angiogenesis of xenograft tumors in mice was decreased in parallel with the reduction of FGF-BP. This suggests that human tumors can utilize FGF-BP as an angiogenic switch molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.