The density-matrix renormalization group (DMRG) algorithm can be adapted to the calculation of dynamical correlation functions in various ways which all represent compromises between computational efficiency and physical accuracy. In this paper we reconsider the oldest approach based on a suitable Lanczos-generated approximate basis and implement it using matrix product states (MPS) for the representation of the basis states. The direct use of matrix product states combined with an ex post reorthogonalization method allows us to avoid several shortcomings of the original approach, namely the multitargeting and the approximate representation of the Hamiltonian inherent in earlier Lanczos-method implementations in the DMRG framework, and to deal with the ghost problem of Lanczos methods, leading to a much better convergence of the spectral weights and poles. We present results for the dynamic spin structure factor of the spin-1/2 antiferromagnetic Heisenberg chain. A comparison to Bethe ansatz results in the thermodynamic limit reveals that the MPS-based Lanczos approach is much more accurate than earlier approaches at minor additional numerical cost.
The common tunneling picture of electron-positron pair creation in a strong electric field is generalized to pair creation in combined crossed electric and magnetic fields. This enhanced picture, being symmetric for electrons and positrons, is formulated in a gauge-invariant and Lorentz-invariant manner for quasistatic fields. It may be used to infer qualitative features of the pair creation process. In particular, it allows for an intuitive interpretation of how the presence of a magnetic field modifies and, in particular cases, even enhances pair creation. The creation of electrons and positrons from the vacuum may be assisted by an energetic photon, which can also be incorporated into this picture of pair creation
We study nonperturbative multiphoton electron-positron pair creation in ultrastrong electromagnetic fields formed by two counterpropagating pulses with elliptic polarization. Our numerical approach allows us to take into account the temporal as well as the spatial variation of the standing electromagnetic field. The spin and momentum resolved pair creation probabilities feature characteristic Rabi oscillations and resonance spectra. Therefore, each laser frequency features a specific momentum distribution of the created particles. We find that, depending on the relative polarization of both pulses, the created electrons may be spin polarized along the direction of field propagation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.