The purpose of this work is to describe the suitable methods for aerodynamic characteristics calculation of hypersonic vehicles in free molecular flow and the transitional regimes. Moving of the hypersonic vehicles at high altitude, it is necessary to know the behavior of its aerodynamic characteristics for all flow regimes. Nowadays, various engineering approaches have been developed for modelling of aerodynamics of aircraft vehicle designs at initial state. The engineering method that described in this paper provides good results for the aerodynamic characteristics of various geometry designs of hypersonic vehicles in the transitional regime. In this paper present the calculation results of aerodynamic characteristics of various hypersonic vehicles in all range of regimes by using engineering method.
The influence of boundary condition of the bodies with gas flows is one of the most important problems in high-altitude aerodynamics. In this paper presents the results of the calculation of aerodynamic characteristics of aerospace vehicle using Monte-Carlo method based on three different gas-surface interaction models -Maxwell model, Cercignani-Lampis-Lord (CLL) model and Lennard-Jones (LJ) potential. These models are very sensitive for force and moment coefficients of aerospace vehicle in the hypersonic free molecular flow. The models, method and results can be used for new generation aerospace vehicle design.
One of characteristic tendencies of development of aerospace technology is continuous extension of requirements to technical characteristics, functionality of aircrafts. In the present work investigated the possibility use of artificial neural networks in the field of hypersonic aerospace system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.