Gelatin microspheres cross-linked with genipin were developed to encapsulate the probiotic Bifidobacterium lactis Bb-12 The effects of different gelatin concentrations (10-19% w/v), bloom strengths (175 and 300), surfactants, stirring rates during emulsion formation and genipin concentrations (0-10 mM) on the microsphere sizes and viability of bacterial cells were investigated. Principal Component Analysis revealed microsphere size distribution differed depending on the presence or absence of surfactants as well as a trend of increasing micropshere size with increasing gelatin concentration and bloom strength. Lower stirring rates resulted in larger microspheres with higher encapsulation yields of bifidobacteria Microsphere size and cell viability were not significantly (p < 0.05) influenced by increasing genipin concentrations up to 10 mM whereas microsphere stability in simulated gastric juice increased with increasing genipin concentration. The encapsulation yields were higher in 175 bloom strength gelatin microspheres than in 300. Cold-stage scanning electron microscopy showed encapsulated bacteria distributed throughout the genipin cross-linked gelatin matrix.
Campylobacter
is the leading cause of food-borne bacterial disease in Canada and many developed countries. One of the most common sources of human campylobacteriosis is considered to be the consumption or handling of raw or undercooked poultry. To date, few Canadian studies have investigated both the prevalence of
Campylobacter
on retail poultry and its potential impact on human clinical cases. The objective of this study was to evaluate the prevalence of
Campylobacter
spp. at the retail level and the correlation between subtypes recovered from chicken and those recovered from human clinical cases within the province of Nova Scotia, Canada. From this study 354 human clinical isolates were obtained from provincial hospital laboratories and a total of 480 packages of raw poultry cuts were sampled from retail outlets, yielding 312 isolates (65%), of all which were subtyped using comparative genomic fingerprinting (CGF). Of the 312 chicken isolates, the majority of isolates were
C
.
jejuni
(91.7%), followed by
C
.
coli
(7.7%) and
C
.
lari
(0.6%). Using CGF to subtype
C
.
jejuni
and
C
.
coli
isolates, 99 and 152 subtypes were recovered from chicken and clinical cases, respectively. The most prevalent human and chicken subtypes found in NS are similar to those observed nationally; indicating that the
Campylobacter
from this study appear to reflect of the profile of
Campylobacter
subtypes circulating nationally. Of the subtypes observed, only 36 subtypes were common between the two groups, however, these subtypes represented 48.3% of the clinical isolates collected. The findings from this study provides evidence that in Nova Scotia, retail poultry can act as a reservoir for
Campylobacter
subtypes that have been implicated in human illness.
To improve survival during exposure to adverse conditions, probiotic Bifidobacterium adolescentis 15703T cells were encapsulated in novel mono-core and multi-core phase-separated gelatine-maltodextrin (GMD) microspheres where the gelatine (G) phase was cross-linked with genipin (GP). Microscopy showed that encapsulated cells were exclusively associated with maltodextrin (MD) core(s). Small (average diameter 37 microm) and large (70 microm) GMD and G microspheres were produced by modulating factors (e.g. mixing speed, surfactant, GP and G concentrations) affecting the size, structural stability and phase-separation. In vitro sequential gastro-intestinal (GI) juice challenge experiments revealed increased survival of cells encapsulated in GMD ( approximately 10(6-7) cfu mL(-1)) and G (approximately 10(5) cfu mL(-1)) microspheres as compared to free cells (approximately 10(4) cfu mL(-1)). In GMD microspheres, the bacteria derive energy from MD to survive during exposure to acid and bile salts. In conclusion, the novel food grade GMD microencapsulation formulation was shown to protect probiotic bifidobacteria from adverse conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.