Loud noise frequently results in hyperacusis or hearing loss (i.e., increased or decreased sensitivity to sound). These conditions are often accompanied by tinnitus (ringing in the ears) and changes in spontaneous neuronal activity (SNA). The ability to differentiate the contributions of hyperacusis and hearing loss to neural correlates of tinnitus has yet to be achieved. Towards this purpose, we used a combination of behavior, electrophysiology, and imaging tools to investigate two models of noise-induced tinnitus (either with temporary hearing loss or with permanent hearing loss). Manganese (Mn) uptake was used as a measure of calcium channel function and as an index of SNA. Manganese uptake was examined in vivo with manganese-enhanced magnetic resonance imaging (MEMRI) in key auditory brain regions implicated in tinnitus. Following acoustic trauma, MEMRI, the SNA index, showed evidence of spatially dependent rearrangement of Mn uptake within specific brain nuclei (i.e., reorganization). Reorganization of Mn uptake in the superior olivary complex and cochlear nucleus was dependent upon tinnitus status. However, reorganization of Mn uptake in the inferior colliculus was dependent upon hearing sensitivity. Furthermore, following permanent hearing loss, reduced Mn uptake was observed. Overall, by combining testing for hearing sensitivity, tinnitus, and SNA, our data move forward the possibility of discriminating the contributions of hyperacusis and hearing loss to tinnitus.
Effective personalized therapeutic treatment for hearing loss is currently not available. Cochlear oxidative stress is commonly identified in the pathogenesis of hearing loss based upon findings from excised tissue, thus suggesting a promising druggable etiology. However, the timing and site(s) to target for anti-oxidant treatment in vivo are not clear. Here, we address this long-standing problem with QUEnch-assiSTed Magnetic Resonance Imaging (QUEST MRI), which non-invasively measures excessive production of free radicals without an exogenous contrast agent. QUEST MRI is hypothesized to be sensitive to noise-evoked cochlear oxidative stress in vivo. Rats exposed to a loud noise event that resulted in hair cell loss and reduced hearing capability had a supra-normal MRI R1 value in their cochleae that could be corrected with anti-oxidants, thus non-invasively indicating cochlear oxidative stress. A gold-standard oxidative damage biomarker [heme oxidase 1 (HO-1)] supported the QUEST MRI result. The results from this study highlight QUEST MRI as a potentially transformative measurement of cochlear oxidative stress in vivo that can be used as a biomarker for improving individual evaluation of anti-oxidant treatment efficacy in currently incurable oxidative stress-based forms of hearing loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.