BCL-XL is an anti-apoptotic BCL-2 family protein found both in the cytosol and bound to intracellular membranes. Structural studies of BCL-XL have advanced by deleting its hydrophobic C-terminus and adding detergents to enhance solubility. However, since the C-terminus is essential for function and detergents strongly affect structure and activity, the molecular mechanisms controlling intracellular localization and cytoprotective activity are incompletely understood. Here we describe the conformations and ligand-binding activities of water-soluble and membrane-bound BCL-XL, with its complete C-terminus, in detergent-free environments. We show that the C-terminus interacts with a conserved surface groove in the water-soluble state of the protein and inserts across the phospholipid bilayer in the membrane-bound state. Contrary to current models, membrane binding does not induce a conformational change in the soluble domain and both states bind a known ligand with affinities that are modulated by the specific state of the protein.
Immunotoxins are antibody-toxin bifunctional molecules that rely on intracellular toxin action to kill target cells. Target specificity is determined via the binding attributes of the chosen antibody. Mostly, but not exclusively, immunotoxins are purpose-built to kill cancer cells as part of novel treatment approaches. Other applications for immunotoxins include immune regulation and the treatment of viral or parasitic diseases. Here we discuss the utility of protein toxins, of both bacterial and plant origin, joined to antibodies for targeting cancer cells. Finally, while clinical goals are focused on the development of novel cancer treatments, much has been learned about toxin action and intracellular pathways. Thus toxins are considered both medicines for treating human disease and probes of cellular function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.