The main risk factor for skin cancer is ultraviolet (UV) exposure, which causes DNA damage. Cells respond to UV-induced DNA damage by activating the intra-S-phase checkpoint, which prevents replication fork collapse, late origin firing and stabilizes fragile sites. Recently, the 54-kDa multifunctional protein NONO was found to be involved in the non-homologous end-joining DNA repair process and in poly ADP-ribose polymerase 1 activation. Interestingly, NONO is mutated in several tumour types and emerged as a crucial factor underlying both melanoma development and progression. Therefore, we set out to evaluate whether NONO could be involved in the DNA-damage response to UV radiations. We generated NONO-silenced HeLa cell clones and found that lack of NONO decreased cell growth rate. Then, we challenged NONO-silenced cells with exposure to UV radiations and found that NONO-silenced cells, compared with control cells, continued to synthesize DNA, failed to block new origin firing and impaired CHK1S345 phosphorylation showing a defective checkpoint activation. Consistently, NONO is present at the sites of UV-induced DNA damage where it localizes to RAD9 foci. To position NONO in the DNA-damage response cascade, we analysed the loading onto chromatin of various intra-S-phase checkpoint mediators and found that NONO favours the loading of topoisomerase II-binding protein 1 acting upstream of the ATM and Rad3-related kinase activity. Strikingly, re-expression of NONO, through an sh-resistant mRNA, rescued CHK1S345 phosphorylation in NONO-silenced cells. Interestingly, NONO silencing affected cell response to UV radiations also in a melanoma cell line. Overall, our data uncover a new role for NONO in mediating the cellular response to UV-induced DNA damage.
DNA double strand break (DSB) repair through homologous recombination (HR) is crucial to maintain genome stability. DSB resection generates a single strand DNA intermediate, which is crucial for the HR process. We used a synthetic DNA structure, mimicking a resection intermediate, as a bait to identify proteins involved in this process. Among these, LC/MS analysis identified the RNA binding protein, HNRNPD. We found that HNRNPD binds chromatin, although this binding occurred independently of DNA damage. However, upon damage, HNRNPD re-localized to γH2Ax foci and its silencing impaired CHK1 S345 phosphorylation and the DNA end resection process. Indeed, HNRNPD silencing reduced: the ssDNA fraction upon camptothecin treatment; AsiSI-induced DSB resection; and RPA32 S4/8 phosphorylation. CRISPR/Cas9-mediated HNRNPD knockout impaired in vitro DNA resection and sensitized cells to camptothecin and olaparib treatment. We found that HNRNPD interacts with the heterogeneous nuclear ribonucleoprotein SAF-A previously associated with DNA damage repair. HNRNPD depletion resulted in an increased amount of RNA:DNA hybrids upon DNA damage. Both the expression of RNase H1 and RNA pol II inhibition recovered the ability to phosphorylate RPA32 S4/8 in HNRNPD knockout cells upon DNA damage, suggesting that RNA:DNA hybrid resolution likely rescues the defective DNA damage response of HNRNPD-depleted cells.
Cell cycle reactivation in adult neurons is an early hallmark of neurodegeneration. The lipopolysaccharide (LPS) is a well-known pro-inflammatory factor that provokes neuronal cell death via glial cells activation. The retinoblastoma (RB) family includes RB1/p105, retinoblastoma-like 1 (RBL1/p107), and retinoblastomalike 2 (Rb2/p130). Several studies have indicated that RB proteins exhibit tumor suppressor activities, and play a central role in cell cycle regulation. In this study, we assessed LPS-mediated inflammatory effect on cell cycle reactivation and apoptosis of neuronally differentiated cells. Also, we investigated whether the LPS-mediated inflammatory response can influence the function and expression of RB proteins. Our results showed that LPS challenges triggered cell cycle reactivation of differentiated neuronal cells, indicated by an accumulation of cells in S and G2/M phase. Furthermore, we found that LPS treatment also induced apoptotic death of neurons. Interestingly, we observed that LPS-mediated inflammatory effect on cell cycle re-entry and apoptosis was concomitant with the aberrant expression of RBL1/p107 and RB1/p105. To the best of our knowledge, our study is the first to indicate a role of LPS in inducing cell cycle re-entry and/or apoptosis of differentiated neuronal cells, perhaps through mechanisms altering the expression of specific members of RB family proteins. This study provides novel information on the biology of post-mitotic neurons and could help in identifying novel therapeutic targets to prevent de novo cell cycle reactivation and/or apoptosis of neurons undergoing neurodegenerative processes.
NONO is an RNA-binding protein involved in transcription, mRNA splicing, DNA repair, and checkpoint activation in response to UV radiation. NONO expression has been found altered in several tumor types, including prostate, colon, breast, melanoma, and in papillary renal carcinoma, in which an X chromosome inversion generates a NONO-TFE3 fusion protein. Upon such rearrangement, NONO loses its C-terminal domain. Through bioinformatics analysis, we identified a putative degron motif, known to be recognized by the Skp1-Cul1-F-box-protein (SCF) complex. Here, we evaluated how this domain could affect NONO protein biology. We showed that NONO interacts with the nuclear FBW7α isoform and its ubiquitination is regulated following modulation of the GSK3β kinase. Mutation of T428A/T432A within the degron impaired polyubiquitination upon FBW7α and GSK3β overexpression. Overall, our data suggest that NONO is likely subjected to proteasome-mediated degradation and add NONO to the list of proteins targeted by FBW7, which is itself often deregulated in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.