Guanine O6 to carrier ligand hydrogen bonding is a central feature of many hypotheses advanced to explain the anticancer activity of cis-type anticancer drugs, cis-PtA(2)X(2) (A(2) = diamine or two amines). Early structural evidence suggested that cis-Pt(NH(3))(2)(d(GpG)) (the cross-link model for the key cisplatin-DNA adduct) and other cis-PtA(2)(d(GpG)) adducts exist exclusively or mainly as the HH1 conformer with head-to-head (HH) bases. The dynamic motion of the d(GpG) in these adducts is too rapid to permit definitive characterization of both the conformation and the H-bonding. Hence, we use retro models having A(2) ligands designed to slow the motion. Here, we employ Me(2)ppz (N,N'-dimethylpiperazine), which lacks NH groups. Me(2)ppz is unique in having sp(3) N-methyl groups directly in the coordination plane, allowing the coexistence of multiple conformers but hindering dynamic motion in Me(2)ppzPt(d(GpG)) and Me(2)ppzPt(GpG) retro models. Dynamic processes are decreased enough in Me(2)ppzPt(d(GpG)) to permit HPLC separation of three abundant forms. After HPLC separation, the three re-equilibrate, proving that the three forms must be conformers and that Me(2)ppz has little influence on conformer distribution. This marks the first reported characterization of three abundant conformers for one cis-PtA(2)(d(GpG)) adduct. From NMR evidence, the Me(2)ppzPt(d(GpG)) HH1 conformer has uncanted bases. Another conformer, one of two recently discovered conformer types, has head-to-tail (HT) bases with Delta chirality. For this Delta HT1 form, several lines of evidence establish that the dinucleotide moieties have essentially identical structures in d(GpG) (and GpG) adducts of Me(2)ppzPt and other cis-PtA(2) complexes. For example, the shifts of the highly structure-sensitive G H8 NMR signals are almost identical for the Delta HT1 form of all adducts. In previous models, the stabilization of the Delta HT1 form could be attributed to G O6 H-bonding to A(2) NH groups. Such H-bonds are not possible for Me(2)ppz. The unambiguous conclusions are that G O6 H-bonding is weak and that neither canting nor H-bonding is essential in HH forms. These two features are present in almost all other small models but are essentially absent in the cross-link base pair (bp) step in duplexes. We conclude from our work that the forces favoring canting and H-bonding are weak, and we hypothesize that steric effects within the Lippard bp step adjacent to this cross-link bp step easily overcome these forces.
We employ retro models, cis-PtA2G2 (A2 = a diamine, G = guanine derivative), to assess the cross-linked head-to-head (HH) form of the cisplatin-DNA d(GpG) adduct widely postulated to be responsible for the anticancer activity. Retro models are designed to have minimal dynamic motion to overcome problems recognized in models derived from cisplatin [A2 = (NH3)2]; the latter models are difficult to understand due to rapid rotation of G bases about the Pt-N7 bond in solution and the dominance of the head-to-tail (HT) form in the solid. Observation of an HH form is unusual for cis-PtA2G2 models. Recently, we found the first HH forms for a cis-PtA2G2 model with A2 lacking NH groups in a study of new Me2ppzPtG2 models. (Me2ppz, N,N'-dimethylpiperazine, has inplane bulk which reduces dynamic motion by clashing with the G O6 as the base rotates into the coordination plane from the ground state position approximately perpendicular to this plane G = 5'-GMP and 3'-GMP.) The finding of an HH form (albeit in a mixture with HT forms) with both G H8 signals unusually downfield encouraged us to study additional Me2ppzPtG2 analogues in order to explain the unusual spectral features and to identify factors that influence the relative stability of HT and HH forms. Molecular modeling techniques suggest HH structures with the H8's close to the deshielding region of the z axis of the magnetically anisotropic Pt atom, explaining the atypical shift pattern. When G = 1-Me-5'-GMP, we obtained NMR evidence that the HH rotamer has a high abundance (34%) and that the three rotamers have nearly equal abundance. These findings and the observation that the relative HT distributions varied little or not at all as a function of pH when G = Guo, 1-MeGuo, or 1-Me-5'-GMP are consistent with two of our earlier proposals concerning phosphate groups in HT forms of cis-PtA2(GMP)2 complexes. We proposed that a G phosphate group can form hydrogen bonds with the cis G N1H ("second-sphere" communication) and (for 5'-phosphate) A2 NH groups. The new results with 1-Me-5'-GMP led us to propose a new role for a 5'-phosphate group; it can also favor the HH form by counteracting the natural preference for the G bases to adopt an HT orientation. Finally, the HH form was also sufficiently abundant to allow observation of a distinct 195Pt NMR signal (downfield of the resonance observed for the HT forms) for several complexes. This is the first report of an HH 195Pt NMR signal for cis-PtA2G2 complexes.
Background and purpose: We showed previously that a new Pt complex containing an O,O′‐chelated acetylacetonate ligand (acac) and a dimethylsulphide in the Pt coordination sphere, [Pt(O,O′‐acac)(γ‐acac)(DMS)], induces apoptosis in HeLa cells. The objective of this study was to investigate the hypothesis that [Pt(O,O′‐acac)(γ‐acac)(DMS)] is also cytotoxic in a MCF‐7 breast cancer cell line relatively insensitive to cisplatin, and to gain a more detailed analysis of the cell death pathways. Experimental approach: Cells were treated with Pt compounds and cytotoxicity tests were performed, together with Western blotting of various proteins involved in apoptosis. The mitochondrial membrane potential was assessed by fluorescence microscopy and spectrofluorometry and the Pt bound to cell fractions was measured by atomic absorption spectrometry. Key results: In contrast to cisplatin, the cytotoxicity of [Pt(O,O′‐acac)(γ‐acac)(DMS)] correlated with cellular accumulation but not with DNA binding. Also, the Pt content in DNA bases was considerably higher for cisplatin than for [Pt(O,O′‐acac)(γ‐acac)(DMS)], thus excluding DNA as a target of [Pt(O,O′‐acac)(γ‐acac)(DMS)]. [Pt(O,O′‐acac)(γ‐acac)(DMS)] exerted high and fast apoptotic processes in MCF‐7 cells since it provoked: (a) mitochondria depolarization; (b) cytochrome c accumulation in the cytosol; (c) translocation of Bax and truncated‐Bid from cytosol to mitochondria and decreased expression of Bcl‐2; (d) cleavage of caspases ‐7 and ‐9, and PARP degradation; (e) chromatin condensation and DNA fragmentation. Conclusions and implications: [Pt(O,O′‐acac)(γ‐acac)(DMS)] is highly cytotoxic for MCF‐7 cells, cells relatively resistant to many chemotherapeutic agents, as it activates the mitochondrial apoptotic pathway. Hence, [Pt(O,O′‐acac)(γ‐acac)(DMS)] has the potential to provide us with new opportunities for therapeutic intervention. British Journal of Pharmacology (2008) 153, 34–49; doi:; published online 19 November 2007
Most simple cis-PtA2G2 complexes that model the G-G cross-link DNA lesions caused by the clinically used anticancer drug cis-PtCl2(NH3)2 undergo large fluxional motions at a rapid rate (A2 = two amines or a diamine; G = guanine derivative). The carrier amine ligands in active compounds have NH groups, but the fundamental role of the NH groups has been obscured by the dynamic motion. To assess carrier ligand effects, we examine retro models, cis-PtA2G2 complexes, in which dynamic motion has been reduced by the incorporation of steric bulk into the carrier ligands. In this study we introduce a new approach employing the chirality-neutral chelate (CNC) ligand, Me2ppz (N,N'-dimethylpiperazine). Because they lie in the Pt coordination plane, the methyl groups of Me2ppz do not clash with the 06 of the base of G ligands in the ground state, but such clashes sterically hinder dynamic motion. NMR spectroscopy provided conclusive evidence that Me2ppzPt(GMP)2 complexes (GMP = 5'- and 3'-GMP) exist as a slowly interconverting mixture of two dominant head-to-tail (HT) conformers and a head-to-head (HH) conformer. Since the absence of carrier ligand chirality precluded using NMR methods to determine the absolute conformation of the two HT conformers, we used our recently developed CD pH jump method to establish chirality. The most abundant HT Me2ppzPt(5'-GMP)2 form had A chirality. Previously this chirality was shown to be favored by phosphate-cis G NIH hydrogen-bonding interligand interactions; such interactions also favor the HT conformers over the HH conformer. For typical carrier ligands, G O6 and phosphate interactions with the carrier ligand NH groups also favor the HT forms. These latter interactions are absent in Me2ppzPt(GMP)2 complexes, but the HT forms are still dominant. Nevertheless, we do find the first evidence for an HH form of a simple cis-PtA2G2 model with A2 lacking any NH groups. In previous studies, the absence of the HH conformer in cis-PtA2G2 complexes lacking carrier NH groups may be due to the presence of out-of-plane carrier ligand bulk. Such bulk forces both G O6-G O6 and G O6-carrier ligand clashes, thereby disfavoring the HH form. The major DNA cross-link adduct has the HH conformation. Thus, for anticancer activity, the small bulk of the NH group may be more important than the H-bonding interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.