BackgroundThe pharmacological chaperones therapy is a promising approach to cure genetic diseases. It relies on substrate competitors used at sub-inhibitory concentration which can be administered orally, reach difficult tissues and have low cost. Clinical trials are currently carried out for Fabry disease, a lysosomal storage disorder caused by inherited genetic mutations of alpha-galactosidase. Regrettably, not all genotypes respond to these drugs.ResultsWe collected the experimental data available in literature on the enzymatic activity of ninety-six missense mutants of lysosomal alpha-galactosidase measured in the presence of pharmacological chaperones. We associated with each mutation seven features derived from the analysis of 3D-structure of the enzyme, two features associated with their thermo-dynamic stability and four features derived from sequence alone. Structural and thermodynamic analysis explains why some mutants of human lysosomal alpha-galactosidase cannot be rescued by pharmacological chaperones: approximately forty per cent of the non responsive cases examined can be correctly associated with a negative prognostic feature. They include mutations occurring in the active site pocket, mutations preventing disulphide bridge formation and severely destabilising mutations. Despite this finding, prediction of mutations responsive to pharmacological chaperones cannot be achieved with high accuracy relying on combinations of structure- and thermodynamic-derived features even with the aid of classical and state of the art statistical learning methods.We developed a procedure to predict responsive mutations with an accuracy as high as 87%: the method scores the mutations by using a suitable position-specific substitution matrix. Our approach is of general applicability since it does not require the knowledge of 3D-structure but relies only on the sequence.ConclusionsResponsiveness to pharmacological chaperones depends on the structural/functional features of the disease-associated protein, whose complex interplay is best reflected on sequence conservation by evolutionary pressure. We propose a predictive method which can be applied to screen novel mutations of alpha galactosidase. The same approach can be extended on a genomic scale to find candidates for therapy with pharmacological chaperones among proteins with unknown tertiary structures.
BackgroundFabry disease is a rare disorder caused by a large variety of mutations in the gene encoding lysosomal alpha-galactosidase. Many of these mutations are unique to individual families. Fabry disease can be treated with enzyme replacement therapy, but a promising novel strategy relies on small molecules, so called "pharmacological chaperones", which can be administered orally. Unfortunately only 42% of genotypes respond to pharmacological chaperones.ResultsA procedure to predict which genotypes responsive to pharmacological chaperones in Fabry disease has been recently proposed. The method uses a position-specific substitution matrix to score the mutations. Using this method, we have screened public databases for predictable responsive cases and selected nine representative mutations as yet untested with pharmacological chaperones. Mutant lysosomal alpha galactosidases were produced by site directed mutagenesis and expressed in mammalian cells. Seven out of nine mutations responded to pharmacological chaperones. Nineteen other mutations that were tested with pharmacological chaperones, but were not included in the training of the predictive method, were gathered from literature and analyzed in silico. In this set all five mutations predicted to be positive were responsive to pharmacological chaperones, bringing the percentage of responsive mutations among those predicted to be positive and not used to train the classifier to 86% (12/14). This figure differs significantly from the percentage of responsive cases observed among all the Fabry mutants tested so far.ConclusionsIn this paper we provide experimental support to an "in silico" method designed to predict missense mutations in the gene encoding lysosomal alpha galactosidase responsive to pharmacological chaperones. We demonstrated that responsive mutations can be predicted with a low percentage of false positive cases. Most of the mutations tested to validate the method were described in the literature as associated to classic or mild classic phenotype. The analysis can provide a guideline for the therapy with pharmacological chaperones supported by experimental results obtained in vitro. We are aware that our results were obtained in vitro and cannot be translated straightforwardly into benefit for patients, but need to be validated by clinical trials.
Fabry_CEP is a user-friendly web-application designed to help clinicians Choose Eligible Patients for the therapy with pharmacological chaperones. It provides a database and a predictive tool to evaluate the responsiveness of lysosomal alpha-galactosidase mutants to a small molecule drug, namely 1-Deoxy-galactonojirimycin. The user can introduce any missense/nonsense mutation in the coding sequence, learn whether it is has been tested and gain access to appropriate reference literature. In the absence of experimental data structural, functional and evolutionary analysis provides a prediction and the probability that a given mutation is responsive to the drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.