The authenticity and quality of productions is an area of priority interest that involves safety of consumers and potential economic damages deriving from frauds on origin, adulteration and labeling of products. Several investigation techniques are currently used to characterize food matrices from physical-chemical-biological point of view using different methods in order to limit possible adulterations. In this work, we have developed an experimental and computational framework to improve the potentialities of sensitive crystallization: an experimental technique known since 1936, but never used for quantitative assessment of food quality. As a test case, it has been applied to investigate the geographical traceability and quality of coffee samples. An extensive statistical analysis associated with a careful choice of advanced image descriptors allows gathering quantitative information about the samples, which can constitute a digital fingerprint of their composition. With this new tool we are able to distinguish with blind tests high-quality coffee brands from low-quality mixtures, different coffee species, green from toasted condition of beans and, to a lesser extent, the macro-geographical provenience. A powder X-ray diffraction analysis reinforces the results obtained by sensitive crystallization for the case where crystalline domains are present in the coffee sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.