Xenoestrogens are chemically distinct industrial products potentially able to disrupt the endocrine system by mimicking the action of endogenous steroid hormones. Among such compounds, the ubiquitous environmental contaminants bisphenol A (BPA) and 4-nonylphenol (NPH) may promote adverse effects in humans triggering estrogenic signals in target tissues. Following a research program on human exposure to endocrine disruptors, we found contamination of fresh food by BPA and NPH. More important, these contaminants were found to display estrogen-like activity using as a model system the estrogen-dependent MCF7 breast cancer cells (MCF7wt); its variant named MCF7SH, which is hormone-independent but still ERalpha-positive, and the steroid receptor-negative human cervical carcinoma HeLa cells. In transfection experiments BPA and NPH activated in a direct manner the endogenous ERalpha in MCF7wt and MCF7SH cells, as the antiestrogen hydroxytamoxifen was able to reverse both responses. Moreover, only the hormone-binding domains of ERalpha and ERbeta expressed by chimeric proteins in HeLa cells were sufficient to elicit the transcriptional activity upon BPA and NPH treatments. Transfecting the same cell line with ERalpha mutants, both contaminants triggered an estrogen-like response. These transactivation properties were interestingly supported in MCF7wt cells by the autoregulation of ERalpha which was assessed by RT-PCR for the mRNA evaluation and by immunoblotting and immunocytochemistry for the determination of protein levels. The ability of BPA and NPH to modulate gene expression was further confirmed by the upregulation of an estrogen target gene like pS2. As a biological counterpart, concentrations of xenoestrogens eliciting transcriptional activity were able to stimulate the proliferation of MCF7wt and MCFSH cells. Only NPH at a dose likely too high to be of any physiological relevance induced a severe cytotoxicity in an ERalpha-independent manner as ascertained in HeLa cells. The estrogenic effects of such industrial agents together with an increasing widespread human exposure should be taken into account for the potential influence also on hormone-dependent breast cancer disease.
The role of the obesity cytokine leptin in breast cancer progression has raised interest in interfering with leptin's actions as a valuable therapeutic strategy. Leptin interacts with its receptor through three different binding sites: I–III. Site I is crucial for the formation of an active leptin–leptin receptor complex and in its subsequent activation. Amino acids 39-42 (Leu-Asp-Phe-Ile- LDFI) were shown to contribute to leptin binding site I and their mutations in alanine resulted in muteins acting as typical antagonists. We synthesized a small peptide based on the wild-type sequence of leptin binding site I (LDFI) and evaluated its efficacy in antagonizing leptin actions in breast cancer using in vitro and in vivo experimental models. The peptide LDFI abolished the leptin-induced anchorage-dependent and -independent growth as well as the migration of ERα-positive (MCF-7) and -negative (SKBR3) breast cancer cells. These results were well correlated with a reduction in the phosphorylation levels of leptin downstream effectors, as JAK2/STAT3/AKT/MAPK. Importantly, the peptide LDFI reversed the leptin-mediated up-regulation of its gene expression, as an additional mechanism able to enhance the peptide antagonistic activity. The described effects were specific for leptin signalling, since the developed peptide was not able to antagonize the other growth factors' actions on signalling activation, proliferation and migration. Finally, we showed that the LDFI pegylated peptide markedly reduced breast tumour growth in xenograft models. The unmodified peptide LDFI acting as a full leptin antagonist could become an attractive option for breast cancer treatment, especially in obese women.
In this article we describe a versatile and straightforward preparative approach to chiral aryl alpha-amino ketones via a Friedel-Crafts-type reaction of stable and enantiomerically pure N-Fmoc protected L-amino acid chlorides with toluene in the presence of aluminum trichloride. The developed methodology provided aryl alpha-amino-p-methylphenyl ketones, which can be obtained and isolated as free bases or recovered as their N-acetyl derivatives, after treatment with acetic anhydride in chloroform at room temperature, subsequent to the Lewis acid induced removal of the 9-fluorenylmethoxycarbonyl protecting group. The Friedel-Crafts-like process and the cleavage of the amino function masking group can selectively be performed since, as verified in all cases, the alpha-aminoacylation step occurred with kinetics that were faster than those required to remove the N-protection. The presented approach was also explored as a facile and useful synthetic tool for the preparation of optically pure ketone di- and tripeptides. These compounds can be obtained in exceptionally overall yields without need of chromatographic purification. Moreover, either aryl alpha-amino ketones or modified di- and tripeptides, in all cases, can be isolated in very high chemical and optical purity without recourse to resolution of diastereomeric mixtures, since the chiralities of the asymmetric amino acid educts were completely conserved throughout the entire process.
[reactions: see text] An efficient and general solution-phase method for the site-specific N-methylation of peptides has been developed. This novel procedure involves synthesis of N-nosyl protected peptides and their subsequent N-methylation with diazomethane. Its efficiency was proved by the successful synthesis of various hindered oligopeptides containing N-methyl amino acid residues with excellent yield and purity. The method is particularly attractive in that the adopted conditions do not cause any detectable racemization of the peptide stereocenters and the process does not require chromatographic purification of the methylated products. A further advantage is the compatibility of this methodology with Fmoc solution-phase peptide synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.