Abstract-IEEE 802.11p/WAVE (Wireless Access in Vehicular Environments) is an emerging family of standards intended to support wireless access in Vehicular Ad Hoc Networks (VANETs). Broadcasting of data and control packets is expected to be crucial in this environment. Both safety-related and non-safety applications rely on broadcasting for the exchange of data or status and advertisement messages. Most of the broadcasting traffic is designed to be delivered on a given frequency during the control channel (CCH) interval set by the WAVE draft standard. The rest of the time, vehicles switch over to one of available service channels (SCHs) for non-safety related data exchange. Although broadcasting in VANETs has been analytically studied, related works neither consider the WAVE channel switching nor its effects on the VANET performance. In this letter, a new analytical model is designed for evaluating the broadcasting performance on CCH in IEEE 802.11p/WAVE vehicular networks. This model explicitly accounts for the WAVE channel switching and computes packet delivery probability as a function of contention window size and number of vehicles.Index Terms-802.11p, WAVE, broadcast, analytical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.