The vast majority of polyhedral assemblies prepared by combining organic bent ligands and "photophysically innocent" palladium(II) metal ions are non-emissive. Here we report a simple strategy to switch on the luminescence properties of a polyhedral assembly by combining a Thermally Activated Delayed Fluorescence (TADF) organic emitter based on a dipyridylcarbazole ligand scaffold with Pd 2+ ions, giving rise to a luminescent Pd 6 L 12 molecular cube. The assembly is capable of encapsulating within its cavity up to three molecules per cage of Fluorescein, in its neutral lactone form, and up to two molecules of Rose Bengal in its dianionic quinoidal form. Photoinduced electron Transfer (PeT) between the photoactive cage and the encapsulated Fluorescein and Photoinduced Energy Transfer (PET) from the cage to encapsulated Rose Bengal have been observed by steady-state and time-resolved emission spectroscopy. Introduction.
Bifunctional aminotriphenolate complexes derived from trivalent metals (M = Co, Mn, Cr) have been prepared and structurally characterized. These complexes are octahedral in the solid state but infer dynamic behavior of the ligated dimethylaminopyridine (DMAP) ligands that can function as initi- [a]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.