The yeast nuclear gene MRS2 encodes a protein of 54 kDa, the presence of which has been shown to be essential for the splicing of group II intron RNA in mitochondria and, independently, for the maintenance of a functional respiratory system. Here we show that the MRS2 gene product (Mrs2p)
One of the causes of permanent disability in chronic multiple sclerosis patients is the inability of oligodendrocyte progenitor cells (OPCs) to terminate their maturation program at lesions. To identify key regulators of myelin gene expression acting at the last stages of OPC maturation we developed a drug repositioning strategy based on the mouse immortalized oligodendrocyte (OL) cell line Oli-neu brought to the premyelination stage by stably expressing a key factor regulating the last stages of OL maturation. The Prestwick Chemical Library® of 1,200 FDA-approved compound(s) was repositioned at three dosages based on the induction of Myelin Basic Protein (MBP) expression. Drug hits were further validated using dosage-dependent reproducibility tests and biochemical assays. The glucocorticoid class of compounds was the most highly represented and we found that they can be divided in three groups according to their efficacy on MBP up-regulation. Since target identification is crucial before bringing compounds to the clinic, we searched for common targets of the primary screen hits based on their known chemical-target interactomes, and the pathways predicted by top ranking compounds were validated using specific inhibitors. Two of the top ranking compounds, Halcinonide and Clobetasol, act as Smoothened (Smo) agonists to up-regulate myelin gene expression in the Oli-neuM cell line. Further, RxRγ activation is required for MBP expression upon Halcinonide and Clobetasol treatment. These data indicate Clobetasol and Halcinonide as potential promyelinating drugs and also provide a mechanistic understanding of their mode of action in the pathway leading to myelination in OPCs. Furthermore, our classification of glucocorticoids with respect to MBP expression provides important novel insights into their effects in the CNS and a rational criteria for their choice in combinatorial therapies in de-myelinating diseases.
Disruption of the nuclear MRS2 gene (mrs2-1 mutation) causes a strong pet- phenotype in strains with mitochondrial group II introns, and a leaky pet- phenotype in strains without group II introns. MRS3 and MRS4, the genes for two mitochondrial-solute carrier proteins, can suppress both phenotypes when present in high-copy-number plasmids. In order to search for further multicopy suppressors of the mrs2-1 mutant phenotype, an yeast genomic DNA library, MW90, was constructed in YEp351 from a strain deleted for the MRS2, MRS3 and MRS4 genes. Ten different Sau3A DNA fragments that act as multicopy suppressors of the mrs2-1 respiratory-deficient phenotype were isolated from this library. Some of the newly isolated genes suppress the pet- phenotypes of mrs2-1 cells in strains with and without mitochondrial group II introns. Other genes, however, are suppressors only for the mitochondrial intron-less strains. This supports the notion that the MRS2 gene product is bifunctional i.e., it is essential for the splicing of group II introns and is also involved in processes of mitochondrial biogenesis other than RNA splicing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.