Droplets and bubbles protected by armors of particles have found vast applications in encapsulation, stabilization of emulsions and foams, or flotation processes. The liquid phase stores capillary energy, while concurrently the solid contacts of the granular network induce friction and energy dissipation, leading to hybrid interfaces of combined properties. By means of nonintrusive tensiometric methods and structural measurements, we distinguish three surface phases of increasing rigidity during the evaporation of armored droplets. The emergence of surface rigidity is reminiscent of jamming of granular matter, but it occurs differently since it is marked by a step by step hardening under surface compression. These results show that the concept of the effective surface tension remains useful only below the first jamming transition. Beyond this point, the surface stresses become anisotropic.
It is well known in industrial applications involving powders and granular materials that the relative air humidity and the presence of electrostatic charges influence drastically the material flowing properties. The relative air humidity induces the formation of capillary bridges and modify the grain surface conductivity. The presence of capillary bridges produces cohesive forces. On the other hand, the apparition of electrostatic charges due to the triboelectric effect at the contacts between the grains and at the contacts between the grains and the container produces electrostatic forces. Therefore, in many cases, the powder cohesiveness is the result of the interplay between capillary and electrostatic forces. Unfortunately, the triboelectric effect is still poorly understood, in particular inside a granular material. Moreover, reproducible electrostatic measurements are difficult to perform. We developed an experimental device to measures the ability of a powder to charge electrostatically during a flow in contact with a selected material. Both electrostatic and flow measurements have been performed in different hygrometric conditions. The correlation between the powder electrostatic properties, the hygrometry and the flowing behavior are analyzed.
It is well known in industrial applications involving powders and granular materials that the presence of electrostatic charges influences drastically the material flowing properties. The triboelectric charges are produced during flow at the contacts between the grains and at the contacts between the grains and the container. Unfortunately, the triboelectric effect is still poorly understood, even at the fundamental level. Therefore, the approach to solve practical problems is mostly empirical. Moreover, reproducible electrostatic measurements are difficult to perform. In the present study, the ability of a set of excipients and active pharmaceutical ingredients (APIs) to produce electrostatic charges during flow in contact with different materials is analyzed with a recently developed instrument called GranuCharge. While different excipients have almost the same triboelectric behavior and a low chargability, APIs show complex triboelectric properties. Some APIs charge a lot while other APIs charge less. Afterward, the electrostatic behavior of API/ excipient blends is considered. We show that the net charge of the blend is a complex function of the relative quantity of API in the mixture. Moreover, both the quantity and the sign of the charge are found to depend on the material in contact with the powder during the flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.